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Abstract

This paper proposes a family of generalized weighted conditional fuzzy c-means (GWCFCM)
clustering algorithms. These algorithms include as a special case the well-known fuzzy c-means
method (FCM) and the conditional fuzzy c-means method (CFCM). New clustering algorithm are

compared experimentally with the fuzzy c-means using the Anderson’s iris database.

1. Introduction

Clustering methods divide a set of N observations (input vectors) x;, X,, ..., Xy into ¢ groups
denoted Q,, 2,, ..., Q, so that members of the same group are more similar than members of other
groups. The number of clusters may be pre-specified or it may be decided by the clustering method.
In Fig. 1 we have an example of seven two-dimensional vectors (N = 7). Intuitively, we may choose
two clusters (¢ = 2) with a solidly marked curve or three clusters (¢ = 3) bound by a dotted curve.
The solution in this case is rather easy, because data are two-dimensional. Generally, practice data
vectors are p-dimensional, and can not be visualized like data in Fig. 1. The optimal (in the sense

of the used criterion) solution can be theoretically by testing all possible partitions found. However,
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Fig. 1 An example of clustering for 7 data vectors.



in practice such an approach is unrealistic, because there is a very large number of possible

combinations of data assignment. There are

partitions of N vectors into ¢ nonempty subsets (see Feller, 1959). For example, there are 2.54-10°*
different partitions for 500 data vectors grouped in 5 clusters. For data from Fig. 1, where N =7,
there are 63 different partitions in 2 clusters and 301 in 3 clusters. Partitions marked in the Figure
seem to be the most reasonable. However, in practice clustered vectors are in high-dimensional
space, and selection of optimal partitions must be performed automatically. The result of that
clustering may be presented as partition matrix U. Dimension of that matrix is ¢ x N, and its

elements are:

1, x ' eQ » )
“« =0, x, €Q,. (2)
where Q, stands for i-th cluster.

If we denote the vector space of all real (¢ x N)-dimensional matrices over R as V,, then the

set of all possible partition matrixes is defined by:

M, ={UeV,|1°2°3°}, (3)

where the conditions are:
1° each x(k) is in or not in i-th cluster:
vV u,e{0,1},
1<ige ik (4)

1<k<N

2° each x(k) is exactly in one of ¢ cluster:

[4

VoY u =1, (5)
1<sk<sN i=1
3° no cluster is empty:
N
Vv 0< Y u,<N. (6)
1sisc k=1

Generally, clustering methods can be divided into: hierarchical, graph theoretic, by



decomposition of density function, by minimization of criterion function. A very popular way of
clustering data is to define a criterion function (scalar index) that measures quality of any partition.
The simplest and most frequently used criterion is the sum-of-square-error (Duda and Hart, 1973):
c N

LUAORDIPIL MRS (7)
where U = [u,] is partition matrix (2), V' = [v, ¥,, ..., ¥.] € V. is a matrix consisting of cluster’s
centers. The most popular algorithm for approximating the minimum of J, is the iterative process
called the hard c-means (HCM) or ISODATA (Iterative Self-Organizing DATA clustering) (see Tou
and Gonzalez, 1974).

The above method assume that each data vector can belong to one and only one class. This
method can be natural for clustering compact and well-separated clusters. However, in practice
clusters overlap, and some data vectors can belong partially to several clusters. A natural way to
describe this situation results in the fuzzy set theory (Zadeh 1965), and belonging or membership of
vector x, to i-th cluster (u,,) is a value from [0, 1] interval. This idea was first introduced by Ruspini

(1969). The so-called fuzzy c-partition as a set of all possible fuzzy partitions to ¢ clusters is defined
by:

c N
M, ={UeV,| VvV uel0ll, Vv Y u=1,V 0<) u<N (8)
Isisc 1<k<N  i=1 Isigc k=1
1<k<N

Fuzzy c-means criteria function has the form:

c N
UV =Y kE ()" i (9)
i=1 k=1

where U € M, V € V,,, d; is any inner product induced norm:

di= 1%~y ;=& -2 4&, -p), (10)

where 4 is positive definite matrix, m is weighting exponent m € [1, «). Criteria (9) were introduced
by Dunn (1973) for m = 2. Bezdek generalized (9) to the infinite family of fuzzy c-means criterion
where m € [1, «). Using Lagrange multipliers the following theorem can be proved (see Bezdek

1982): If we fix parameters m and c, and define sets:
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I ={i|l<i<c;d, =04,
v {1l =0} (11)
1<k<N ];:{1,2,...,6'}\1,

then (U, V) € (M}, x V) may be globally minimal for J,(U, V) only if:

2 2
== [y L7 1-o,
v o, - [d,-k) / [le(dﬂc) ] c (12)

l<is<c

1<ksN —_
0, Z uik—l’ Ik;&@’

iel,

and

l<isce =

N N
Voo = [ ) (“ik)mlk]/ [E (uik)m]' (13)
Optimal partition matrix U,, is a fixed point of (12) and (13), and the solution is obtained from

Pickard algorithm. This solution is called fuzzy ISODATA or fuzzy c-means (FCM), and can be

described as:
1° fix c (1 <c < N), m € [1, »). Initialize U‘O)erc,
2° calculate fuzzy centers V9 = [y(ll’, %”, . ,y‘f]using (13) and UY,

3° update fuzzy partition matrix UY*" for (j+1)-th iteration using (12),

4° if | UYD - UP| >¢,then,j - j+ 1, goto 2°.

In this algorithm, parameter m influences the fuzziness of the clusters; the larger is m the fuzzier are
the clusters. For m - 1*, fuzzy c-means solution becomes the hard one, and for m - « the solution
is as fuzzy as possible: u, = 1/c, for all i,k. There is no theoretical basis for the selection of m, and
usually m = 2 is chosen.

In the paper by Pedrycz (1998) and (1998a) the method called conditional fuzzy c-means
(CFCM) or context-dependent clustering was proposed. In this case data vectors x, are clustered
under conditions based on some linguistic terms defined in corresponding data vectors y,. These
linguistic terms are treated as fuzzy relations, defined by membership functions. Finally we have,
a corresponding value f; € [0, 1] for each data vector x;. In this case c-partitions are defined as:

[+

N
My, ={UeVyl vV u,el01], V u,=f, v 0<Y u, <N}  (14)
lgise 1<k<N =1 lsisc k=1

1<k<N



The necessary conditions for minimization criterion (9) under constraints (14) are (13) for cluster

center, and:

e (g} 2
Voou, =f E[—"‘]l'"’. (15)
lgi<c j=1 djk
1<k<N

This method develops clusters using similarity of data vectors x, as well as conditional information

from dependent variables.

2. New generalized weighted conditional fuzzy c-means
Incorporating additional information to the clustering process by (14) is one of the many

possibilities. We propose following method based on the weighted generalized mean, described as

conditions:
c
oy ¢ Yap =S (16)
where:

c

L"j(m,li) Up = (; B, (uik)a) . (17)

i=1
@€ (-, 0)u(0,+x)and Y, B, = 1.

For a = 1, (17) gives the weighted arithmetic mean:

el-

c [4
L‘“Ju,g) Up = 2; By e - (18)
i=1 =

For a -~ 0, we obtain the weighted geometric mean:
[

U(o,ﬁ) Uy = H (uik)ﬁi' (19)
i=1

As a =-1 and u, # 0, (17) approaches the weighted harmonic mean:

-1
L+J<—1,B) Uik = [Z E] : (20)

i=1 i=1 Uy

In this case we have a new c-partition type:
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c

Mgcfc ={Ue VcN V Uy > 0, v ¢ +(a,ﬁ) Ui fk’ V 0< E Ui <> (o (21)
1 1<k<N 1

The solution of minimization criterion function J,, given by (9) under conditions (16) is yielded by

theorem: The necessary conditions for solution (U,,,, V) € (Mg X V) of (9) with conditions (16)

are.
2 ¢ 2
1- 1- —
feld)' ™™ [ | e Wy @) L=e
Voouy = j1 (22)
l<ise
1<ksN Y 0, CU(O.,B) U, :f}c, Ik;&@’
i€l iel,
and:

v ) [ ] @

Proof: If we fix VeV, then columns of U are independent, and minimization of (9) can be done

term by term:

v g = E ()™ A (24)
1<k<N
LaGrangian of (9) is:
Y Gwn - - Merw 4) 5

where F(u,) is abbreviation for function (17). Setting LaGrangian’s gradient to zero yields:
oG(U, M)

e U C I R (26)
and:
3G,(U N . OFw)
(7 = m-1dc -\e =0.
1<1sN auS, m (us') st au (27)
l<sx<c

From (27) we get:
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1
AMa| 1 98 W) 1o
o[22
m d, Uy
From (26), (16) and using condition:
v L"J(a p XUy = % Egp U (29)
x>0 i=1 i=1
1<ksN
we get:
1
c x],,,—.—; 1 0Fw) o=
c|— F, =1, (30)
[ m J azf auS, f

Combining (28) and (30), and using condition (29) yields:

2

0@ 4 ety o
j=1

If I, # o, then choosing u, as in (22) results in minimal value of criterion (9), because partition

matrix elements are zeros for non-zero distance, and non-zero for zero distances.

[
If we use weighted generalized mean (17) then for I, = o
1 2
: fk (dik) -
e T e VL (32)
1<k<N < i-ml|¢
[Jf; B, () )

For f, = 1, we obtain weighted generalized c-means method, and for ;s equal to 1/c, and 0=1 we
obtain conditional c-means.
There is no theoretical basis for the selection of B;, and we use these weight, which provides

a measure of the average distance between cluster center v, and data vectors:



il 2
> d
A e (33)
gisc E d2
j=1 k=1 7

3. Numerical example

The iris database is perhaps the best known database to be found in the pattern recognition literature.
The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant.
The data were collected by Anderson (1935). The vector of features consists of: 1).sepal length in
cm, 2).sepal width in cm, 3).petal length in cm, 4).petal width in cm. We consider three classes of
patterns: Iris Setosa, Iris Versicolour i Iris Virginica. For calculations parameter a equal to two was
applied. A confusion matrix for 500 iterations and three classes has been shown in Table 1. In this
Table the following abbreviations are utilized: FCM - the fuzzy c-means, GWCFCM (without
context) - the generalized weighted conditional fuzzy c-means with fs equal to one, GWCFCM
(with context) - the generalized weighted conditional fuzzy c-means with context based on linguistic
term A defined on petal length with the following membership function:

-4\
Jo = A(x; ) = exp{—-(ﬁs—o—)—}, (34)

where x;, denotes petal length for k-th data vector.

Table 1. Results for clustering of the iris problem.

Confusion Matrix
FCM GWCFCM GWCFCM

(without context) | (with context)

50 0 0 50 0 0 50 0 0
0 47 3 0 45 5 0 46 6
0 13 | 37 0 9 41 0 5 45




4. Conclusion

This paper proposes the infinite family of generalized weighted conditional fuzzy clustering
method. The clustering problem is formulated, the well-known fuzzy c-means and conditional
c-means are recalled. The generalized weighted conditional fuzzy c-means is introduced as a
constrained minimization problem of criterion function. The necessary conditions (with proof) for
obtain local minimum of the criterion function are shown. Simple numerical example on Anderson’s
iris database is also included. The existing fuzzy c-means and the conditional c-means methods can

be obtained as a special case of the method proposed in this paper.
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