Fuzzy Factor Algebra of F-Algebra

Leng Xuebin Zhong Hongxin

(Department of Mathematics and System Science, Liaocheng Teacher's University, Shandong 252059, P.R.China)

Abstract: In this paper, we will introduce the concept of fuzzy factor algebra of fuzzy algebra over fuzzy field, and discuss the important properties of it.

Keywords: fuzzy field, F-fuzzy algebra, F-fuzzy ideal, fuzzy homomorphism.

1 Preliminaries

Let X be any set, L a complete distributive lattice with 0,1. A fuzzy subset A on X is characterized by mapping A: $X \rightarrow L$, X^{L} denotes the set of whole fuzzy subset of X.

Definition 1.1 Let K be a field, $A \in K^L$, the F is called a fuzzy field of K, if for all $x, y \in K$

- 1) $F(x-y) \ge F(x) \land F(y)$,
- 2) $F(xy) \ge F(x) \land F(y)$,
- 3) $F(x) \ge F(\chi^{-1})$, if $x \ne 0$.

Definition 1.2 Let Y be an algebra over field K, F a fuzzy field of K,

and $A \in Y^{L}$. Then A is called a fuzzy algebra of Y, if

- 1) $A(x-y) \ge A(x) \land A(y)$,
- 2) $A(xy) \ge A(x) \land A(y)$,
- 3) $A(\lambda x) \ge A(x) \wedge F(\lambda)$,

for all $x, y \in Y$, and $\lambda \in K$. In brief A is an F-fuzzy algebra.

Unless specially stated, Y only refers to the algebra over field K, F only refers to the fuzzy field of K, A only refers to the F-fuzzy algebra of Y in this paper.

Definition 1.3 Let A be an F-algebra of Y. Then A is called an F-fuzzy left ideal of Y, if $A(xy)>A(x)\lor A(y)$ for all $x,y\in Y$.

Definition 1.4 let B be an F-fuzzy ideal of Y, the fuzzy subset x+B of Y is defined as follows: (x+B)y=B(x-y) for all $y \in Y$.

Definition 1.5 Let B be an F-fuzzy ideal of Y, $Y/B = \{x+B|x+Y\}$. The operation "+", "." and sclar product on Y/B are defined as follows:

$$(x+B)+(y+B)=x+y+B,$$

 $(x+B)(y+B)=xy+B,$
 $\lambda (x+B)=\lambda x+B.$

2 Fuzzy factor algebra of the F-fuzzy algebra

Proposition 2.1 Let B be an F-fuzzy ideal of algebra Y, then Y/B is an algebra over field K.

Proposition 2.2 Let B be an F-fuzzy ideal of the algebra Y, and

 $G_B = \{x | x \in Y, B(x) = B(0)\}, \text{ then } G_B \text{ is an ideal of } Y, \text{ and } Y/G_B \cong Y/B.$

We can easily prove the Proposition 2.1 and Proposition 2.2.

Let Y be an algebra over field K, A an F-fuzzy algebra of Y, B an F-fuzzy ideal of Y. We define a fuzzy set A/B of Y/B as follows:

A/B:Y/B
$$\rightarrow$$
 L and A/B (x+B)= $\begin{array}{c} \checkmark \\ y+B=x+B \end{array}$ $A(y)$

Theorem 2.3 A/B is an F-fuzzy algebra of Y/B.

Prof. For all $x,y \in Y$, $\lambda \in K$, we have

A/B ((x+B)-(y+B))=A/B (x-y+B)
$$= \bigvee_{z+B=x-y+B} A(z)$$

$$\geq \bigvee_{x_1+B=x+B \atop y_1+B=-y+B} A(x_1 + y_1)$$

$$\geq \bigvee_{x_1+B=x+B \atop y_1+B=-y+B} A(x_1) \wedge A(y_1)$$

$$= (\bigvee_{x_1+B=x+B} A(x_1)) \wedge (\bigvee_{y_1+B=-y+B} A(y_1))$$

$$= (A/B(x+B)) \wedge (A/B(-y+B))$$

$$\geq (A/B(x+B)) \wedge (A/B(y+B))$$

$$A/B(\lambda(x+B)) = A/B(\lambda x+B)$$

$$= \bigvee_{z=\lambda x} A(z)$$

$$\geq \bigvee_{z=\lambda x} A(\lambda x_1)$$

$$\geq \bigvee_{\lambda x_1 = \lambda x} A(\lambda x_1) \wedge F(\lambda)$$

$$= F(\lambda) \wedge \bigvee_{\lambda x_1 = \lambda x} A(x_1)$$

$$=F(\lambda) \wedge A/B(x+B)$$

$$A/B(x+B)(y+B)=A/B(xy+B)$$

$$= \bigvee_{z+B=xy+B} A(z)$$

$$= \bigvee_{x_1+B=x+B} A(x_1y_1)$$

$$y_1+B=y+B$$

$$\vee$$

$$\geq x_1+B=x+B A(x_1) \wedge A(y_1)$$

$$y_1+B=y+B$$

$$=(\bigvee_{x_1+B=x+B} A(x_1)) \wedge (\bigvee_{y_1+B=y+B} A(y_1))$$

$$=(A/B(x+B)) \wedge (A/B(y+B)).$$

So, A/B is an F-fuzzy algebra.

Definition 2.4 We call A/B the F-fuzzy factor algebra of A about B.

Definition 2.5 Let Y, Y ' be general sets, $f:Y \to Y$ ' a surjective mapping ,and A a fuzzy set of Y. If f(x)=f(y) follows A(x)=A(y), then A is called f-invariant.

Definition 2.6 Let $f: Y \rightarrow Y$ be an algebra homomorphism (isomorphism), A and A fuzzy F-algebra of Y and Y , respectively: If f(A)=A, then we say A is homomorphic (isomorphic) to A , which is denoted as $A \hookrightarrow A$ ($A \cong A$).

Similarly Proposition 2.5, Proposition 2.6, Theorem 2.7, Proposition 2.8, Theorem 2.9 of [1], we have the following Theorems and Proposition.

Proposition 2.7 Let Y be a algebra over field K, A and B as above,

then $A \hookrightarrow A/B$.

Proposition 2.8 Let f be an algebra homomorphism from algebra Y into algebra Y', A the F-fuzzy algebra of Y, and I the ideal of Y. If $G_B \subset \ker f$, then A/B $\hookrightarrow f(A)$.

Theorem 2.9 Let $f: Y \to Y$ be an algebra homomorphism, A a fuzzy algebra of Y, B a F-fuzzy ideal of Y and $G_B = \ker f$, then $A/B \cong f(A)$.

Proposition 2.10 Let $f: Y \rightarrow Y$ be an algebra homomorphism, B a fuzzy ideal of Y and B be f-invariant. Then $Y/B \cong Y$ f(B).

Theorem 2.11 Let $f: Y \to Y$ be an algebra homomorphism, A a fuzzy algebra of Y and B a F-fuzzy ideal of Y. If B is f-invariant, then $A/B \cong f(A)/f(B)$.

Reference

- [1] Leng Xuebin, Fuzzy Factor Algebras, BUSEFAL 77(1999), 13-18.
- [2] Chen De-Gong, Li Su-Yun, Fuzzy factor rings, Fuzzy Sets and Systems 94(1998),125-127.
- [3] Zhao Jianli, Shi Kaiquan, On fuzzy algebras over fuzzy fields, PROCEEDINGS OF SCI'94, VOLUME 1, 346-350, Huazhang University of Science and Technoligy Press.