The lattice structure of fuzzy K-algebra

Qingde Zhang^a Shubang Li^b

^a Department of Computer, Liaocheng Teachers University, Shandong252059, P.R.China ^b Department of Physics, Liaocheng Education Institute, Shandong252000, P.R.China

Abstract

In this paper, we study the lattice structure of fuzzy K-subalgebras with the technique of nested set and obtain that the lattice of all fuzzy K-subalgebras is modular.

Keywords: Nested set; Fuzzy K-subalgebra; Lattice; Modularity.

1. Preliminaries

We recall some definitions and results first. K always represents a communicative ring with unit element 1; A denotes a K-algebra; sub(A) denotes the set of all K-subalgebras of A; I(A) denotes the set of all algebra ideals of A.

Proposition1.1 sub(A) forms a complete modular lattice with maximal and minimal elements A and $\{0\}$, respectively, and for any B, $C \in sub(A)$,

$$B \lor C = B + C$$
, $B \land C = B \cap C$.

Proposition1.2 I(A) is a complete sublattice of sub(A).

Definition1.1 Let f be a mapping from X into Y, and let $\mu \in F(X)(F(X))$ denotes the set of all fuzzy subset of X) and $\eta \in F(Y)$. Then fuzzy subsets $f(\mu)$ and $f^{-1}(\eta)$, defined by

$$f(\mu)(y) = \sqrt{\mu(x)} | x \in f^{-1}(y)$$
 $\forall y \in Y$

and

$$f^{-1}(\eta)(x) = \eta(f(x)) \quad \forall x \in X,$$

are called the image of μ and the pre-image of η under f, respectively.

Definition1.2[1] Let X be a set and P(X) denotes the power set of X. A map $H:[0,1] \to P(X); \lambda \to H(\lambda)$

is called a nested set of X, if

$$\lambda_1 < \lambda_2 \Rightarrow H(\lambda_1) \supseteq H(\lambda_2)$$
.

We denote the nested set by $H: \{H(\lambda) | \lambda \in [0,1]\}.$

If H is a nested set of X, let

$$\mu = \bigcup_{\lambda \in [0,1]} \lambda H(\lambda) \text{ (i.e., } \mu(x) = \sqrt{\lambda | x \in H(\lambda) } \} \forall x \in X, \text{ stipulation } \sqrt{\varnothing} = 0),$$

then $\mu \in F(X)$, we call this μ the fuzzy set determined by nested set H.

Proposition1.3[1] Let H be a nested set of X, $\mu \in F(X)$. Then μ is determined by H if and only if $\mu_{\lambda} \subseteq H(\lambda) \subseteq \mu_{\lambda}$.

2. Important properties

Definition 2.1 A fuzzy K-subalgebra (briefly, fuzzy subalgebra) of K-algebra A is a function $\mu: A \to [0,1]$ such that following properties holds:

- (1) $\mu(0) = 1$,
- $(2) \quad \mu(ax+by) \ge \mu(x) \wedge \mu(y) ,$
- (3) $\mu(xy) \ge \mu(x) \wedge \mu(y)$.

Where $a,b \in K$, $x,y \in A$.

We denote the set of all fuzzy subalgebra of A with the symbol Fsub(A). **Proposition2.1** Let $\mu \in F(A)$, then μ is a fuzzy subalgebra of A if and only if $\mu_{\lambda}(\lambda \in [0,1])$ is a subalgebra of A.

Proposition2.2 Let $\mu \in F(A)$, then μ is a fuzzy subalgebra of A if and only if $\mu_{\lambda}(\lambda \in [0,1))$ is a subalgebra of A.

Theorem2.3 Let μ be a fuzzy subset determined by nested set H. If $H(\lambda)$ are all subalgebra of A, for any $\lambda \in [0,1]$, then μ is a fuzzy subalgebra of A.

Proof. For any $a,b \in K$, $x,y \in A$, let $\mu(x) = s$, $\mu(y) = t \ge s$, then $x \in \mu_{s-\varepsilon}$, $y \in \mu_{t-\varepsilon} \subseteq \mu_{s-\varepsilon}$ ($\forall \varepsilon \in (0,s)$), thus $x,y \in \mu_{s-\varepsilon} \subseteq H(s-\varepsilon)$ (Proposition 1.3). From $H(s-\varepsilon)$ is a subalgebra we know ax + by, $xy \in H(s-\varepsilon)$, but $H(s-\varepsilon) \subseteq \mu_{s-\varepsilon}$ (Proposition 1.3), so ax + by, $xy \in \mu_{s-\varepsilon}$, by the arbitrary of ε , ax + by, $xy \in \mu_s$, that is $\mu(ax + by) \ge s = \mu(x) \land \mu(y)$, $\mu(xy) \ge s = \mu(x) \land \mu(y)$, and then μ is a fuzzy subalgebra of A.

Remark2.4 The inverse of Theorem2.3 is not right.

For example: Let Z be the integer ring. Obviously, Z is Z-algebra. Now let S be the even number ring and define the nested set H as follows:

$$H(\lambda) = \begin{cases} S & 0 \le \lambda < 0.5 \\ \{0, 2, 4\} & \lambda = 0.5 \\ \{0\} & \lambda > 0.5 \end{cases}.$$

It is easy to verify that H is a nested set of Z-algebra Z and the fuzzy subset μ determined by H is

$$\mu(k) = \sqrt{\lambda | k \in H(\lambda)} = \begin{cases} 1 & k = 0 \\ 0.5 & k \in S \setminus \{0\} \\ 0 & k \notin S \end{cases}$$

Obviously, $\mu \in Fsub(A)$, but $H(0.5) = \{0,2,4\} \notin sub(A)$.

Definition2.2 Let μ be a fuzzy subalgebra of A. If for any $x, y \in A$, $\mu(xy) \ge \mu(x) \lor \mu(y)$, then we call μ a fuzzy algebra ideal of A.

We denote the set of all fuzzy algebra ideals with the symbol FI(A).

Theorem2.5 Let μ be a fuzzy set determined by nested set. If $H(\lambda)(\lambda \in [0,1])$ are all algebra ideals of A, then μ is a fuzzy algebra ideal of A.

Proof. Similar to Theorem 2.3.

Definition 2.3 Let μ, η are two fuzzy set of A. We define the sum $\mu + \eta$ of μ and η as follows:

$$(\mu + \eta)(z) = \vee \{\mu(x) \wedge \eta(y) | x + y = z\}.$$

Proposition2.6 Let $\mu, \eta \in F(A)$ are two fuzzy set of A, then

(1)
$$(\mu + \eta)_{\lambda} \supseteq \mu_{\lambda} + \eta_{\lambda}$$
, (2) $(\mu + \eta)_{\lambda} = \mu_{\lambda} + \eta_{\lambda}$.

Proof. (1) For any $z \in \mu_{\lambda} + \eta_{\lambda}$, let $z = x_0 + y_0, x_0 \in \mu_{\lambda}, y_0 \in \eta_{\lambda}$, then $(\mu + \eta)(z) = \sqrt{\{\mu(x) \land \eta(y) | x + y = z\}} \ge \mu(x_0) \land \eta(y_0) \ge \lambda$, so $z \in (\mu + \eta)_{\lambda}$, and then $(\mu + \eta)_{\lambda} \supseteq \mu_{\lambda} + \eta_{\lambda}$.

(2) The proof of $(\mu + \eta)_{\lambda} \supseteq \mu_{\lambda} + \eta_{\lambda}$ is similar to the proof of (1); Other hand, for any $z \in (\mu + \eta)_{\lambda}$, $(\mu + \eta)(z) = \bigvee \{\mu(x) \land \eta(y) | x + y = z\} > \lambda$, there some x_0, y_0 , such that $z = x_0 + y_0$ and $\mu(x_0) \land \eta(y_0) > \lambda$, so $x_0 \in \mu_{\lambda}$, $y_0 \in \eta_{\lambda}$, and $z \in \mu_{\lambda} + \eta_{\lambda}$. Therefore (2) holds.

Proposition2.7 Let $\mu, \eta \in F(A)$ be two fuzzy sets determined by nested sets H, K, respectively. Then $\mu + \eta$ are determined by the nested set $H + K : \{H(\lambda) + K(\lambda) | \lambda \in [0,1]\}.$

Proof. By the hypothesis, $\mu_{\lambda} \subseteq H(\lambda) \subseteq \mu_{\lambda}$, $\eta_{\lambda} \subseteq K(\lambda) \subseteq \eta_{\lambda}$, so we have $\mu_{\lambda} + \eta_{\lambda} \subseteq H(\lambda) + K(\lambda) \subseteq \mu_{\lambda} + \eta_{\lambda}$, and then $(\mu + \eta)_{\lambda} \subseteq H(\lambda) + K(\lambda) \subseteq (\mu + \eta)_{\lambda}$ from Proposition 2.6, this means $\mu + \eta$ is determined by the nested set $H + K : \{H(\lambda) + K(\lambda) | \lambda \in [0,1]\}$.

Theorem2.8 Let μ and η be two fuzzy subalgebras (ideals) of A, then $\mu + \eta$ is a fuzzy subalgebra (ideal) of A.

Proof. We prove the Theorem to fuzzy subalgebra only. Because μ and η are subalgebras of A, Proposition 2.6 two from have $(\mu + \eta)_{\lambda} \subseteq \mu_{\lambda} + \eta_{\lambda} \subseteq (\mu + \eta)_{\lambda}$, this means that $\mu + \eta$ is determined by the nested set $H: \{\mu_{\lambda} + \eta_{\lambda} | \lambda \in [0,1]\}$. Since μ and η are two fuzzy subalgebras, so all subalgebras, and and then $H(\lambda) = \mu_1 + \eta_2$ a subalgebra (Proposition 1.1), $\mu + \eta$ is a fuzzy subalgebra of A.

3. Lattice structure

Theorem3.1 The set Fsub(A) forms a complete lattice under the inclusion relation \subseteq with the intersection as its inf. Its maximal and minimal elements are 1_A and 1_0 , respectively.

Proof. For any $\mu_i \in Fsub(A)$, $i \in I$, where I is any nonempty index set. Then for any $k, l \in K$, $x, y \in A$,

$$(\bigwedge_{i \in I} \mu_i)(kx + ly) = \bigwedge_{i \in I} (\mu_i(kx + ly)) \ge \bigwedge_{i \in I} (\mu_i(x) \wedge \mu_i(y))$$

$$= (\bigwedge_{i \in I} \mu_i(x)) \wedge (\bigwedge_{i \in I} \mu_i(y)) = (\bigwedge_{i \in I} \mu_i)(x) \wedge (\bigwedge_{i \in I} \mu_i)(y)$$

$$(\bigwedge_{i \in I} \mu_i)(xy) = \bigwedge_{i \in I} (\mu_i(xy)) \ge \bigwedge_{i \in I} (\mu_i(x) \wedge \mu_i(y)) = (\bigwedge_{i \in I} \mu_i)(x) \wedge (\bigwedge_{i \in I} \mu_i)(y).$$

Hence, we conclude that $\bigwedge_{i \in I} \mu_i \in Fsub(A)$. Obviously, $1_A \in Fsub(A)$, thus we can assert that Fsub(A) forms a complete lattice under the order \subseteq . Other conclusion of this theorem is easy.

In the lattice Fsub(A), \vee, \wedge denote the sup, inf, respectively.

Proposition3.2 FI(A) is the complete sublattice of Fsub(A).

Proof is easy and omitted. \Box

Theorem3.3 Let $\mu, \eta \in Fsub(A)$, then $\mu \vee \eta = \mu + \eta$.

Proof. By Theorem2.8, $\mu + \eta \in Fsub(A)$. Since $\mu_{\lambda}, \eta_{\lambda} \subseteq \mu_{\mu} + \eta_{\lambda} \subseteq (\mu + \eta)_{\lambda}$, and then $\mu, \eta \subseteq \mu + \eta$. If $\xi \in Fsub(A)$ and $\mu, \eta \subseteq \xi$, then $\mu_{\lambda}, \eta_{\lambda} \subseteq \xi_{\lambda}$, and then $\mu_{\lambda} + \eta_{\lambda} \subseteq \xi_{\lambda}$, but $(\mu + \eta)_{\lambda} \subseteq \mu_{\lambda} + \eta_{\lambda}$ (proposition2.6), thus $(\mu + \eta)_{\lambda} \subseteq \xi_{\lambda}$, so $\mu + \eta \subseteq \xi$, this means that $\mu + \eta$ is a minimal fuzzy subalgebra of A which contains μ and η , that is $\mu \vee \eta = \mu + \eta$.

Remark3.4 The lattice Fsub(A) is not distributive.

Proof. Suppose, if possible, Fsub(A) is distributive. Let A be a ring, Z the ring of integers, then A is a Z-algebra. In this case, K=Z, Fsub(A) is the lattice of all fuzzy subrings and is distributive, of course, the lattice of all fuzzy ideals of a ring A is also distributivity. This contradicts the Theorem(The lattice of all fuzzy ideals of a ring is not distributivity)[5].

Theorem3.5 The lattice Fsub(A) is modular.

Proof. For any $\mu, \eta \in Fsub(A)$, it's easy to verify that $(\mu \wedge \eta)_{\lambda} = \mu_{\lambda} \wedge \eta_{\lambda}$, $(\mu \wedge \eta)_{\lambda} = \mu_{\lambda} \wedge \eta_{\lambda}$.

For any $\mu, \eta, \gamma \in Fsub(A)$ and $\eta \supseteq \mu$, we will prove $\mu \land (\eta \lor \gamma) = \eta \lor (\mu \land \gamma)$. From Theorem 3.3 and Proposition2.6 we have $\mu \land (\eta \lor \gamma) = \mu \land (\eta + \gamma)$ and $(\mu \land (\eta + \gamma))_{\lambda} = \mu_{\lambda} \land (\eta + \gamma)_{\lambda} \subseteq \mu_{\lambda} \land (\eta_{\lambda} + \gamma_{\lambda}) \subseteq \mu_{\lambda} \land (\eta + \gamma)_{\lambda} = (\mu \land (\eta + \gamma))_{\lambda}$, $(\eta + (\mu \land \gamma))_{\lambda} \subseteq \eta_{\lambda} + (\mu \land \gamma)_{\lambda} = \eta_{\lambda} + (\mu_{\lambda} \land \gamma_{\lambda}) \subseteq (\eta + (\mu \land \gamma))_{\lambda}$. This shows that $\mu \wedge (\eta + \gamma)$ and $\eta + (\mu \wedge \gamma)$ are determined by the nested sets $\mu_{\lambda} \wedge (\eta_{\lambda} + \gamma_{\lambda})$ and $\eta_{\lambda} + (\mu_{\lambda} \wedge \gamma_{\lambda}))_{\lambda}$, respectively. But $\mu_{\lambda}, \eta_{\lambda}$ and γ_{λ} are all the crisp K-subalgebras of A and $\mu_{\lambda} \supseteq \eta_{\lambda}$, by Proposition1.1 we have $\mu_{\lambda} \wedge (\eta_{\lambda} + \gamma_{\lambda}) = \eta_{\lambda} + (\mu_{\lambda} \wedge \gamma_{\lambda})$, and then $\mu \wedge (\eta \vee \gamma) = \eta \vee (\mu \wedge \gamma)$.

Corollary3.6 The lattice FI(A) is modular.

Proposition3.7 If $B, C \in Fsub(A)$ and $B \subset C$. Let

 $Fsub_{mid}(B,C) = \{D | D \in Fsub(A) \text{ and } B \subseteq D \subseteq C\}.$

Then $Fsub_{mid}(B,C)$ is the complete sublattice of Fsub(A) with maximal and minimal elements B and C, respectively. Of course, $Fsub_{mid}(B,C)$ is modular.

Proof. Omitted.

Referens

- [1] Luo Chengzhong, An introduction to fuzzy sets (Beijing Teachers University Publishing House, Beijing, 1989).
- [2] K.S.Abdukhalikov, M.S.Tulenbaev and U.U.Umirbaev, On fuzzy algebras, Fuzzy Sets and Systems 93(1998) 257-262.
- [3] Qingde Zhang and Guangwu Meng, On the lattice of fuzzy ideals of a ring, Fuzzy Sets and Systems (To appear).
- [4] N.Jacobson, Basic Algebra I (Freeman, San Francico, CA, 1974).
- [5] R.Kumar, Non-distributivity of the lattice of fuzzy ideals of a ring, Fuzzy Sets and Systems 97(1998) 393-394.
- [6] N.Ajmal and K.V.Thomas, The lattice of fuzzy ideals of a ring, Fuzzy Sets and Systems 74(1995) 371-379.
- [7] Y.-D.Yu and Z.-D.Wang, TL-subrings and TL-ideals. Part 1. Basic concepts, Fuzzy Sets and Systems 68(1994) 93-103.
- [8] P.S.Das, Fuzzy groups and level subgroups, J.Math.Anal.Appl. 84(1981) 264-269.