$(\in, \in \lor q)$ - Fuzzy algebras

Shaoquan Sun

Dept. of Mathematics, Jilin Province College of Education Changchun, Jilin, 130022, China

Abstrct: In this paper, the concept of $(\in, \in Vq)$ -fuzzy fields and $(\in, \in Vq)$ -fuzzy algebra are introduced. A necessary and sufficient condition for a fuzzy sets to be an $(\in, \in Vq)$ -fuzzy algebra is stated, and using the extension principle of fuzzy sets, images and inverse - images of an $(\in, \in Vq)$ -fuzzy algebra under a algebraic homomorphism are studied.

keywords: Fuzzy algebra; belongs to; quasi - coincident; $(\in, \in \lor q)$ - fuzzy field; $(\in, \lor q)$ - fuzzy algebra.

1. Introduction

In 1996, S. K. Bhakat and P. Das [4-5] used relation of "belongs to" and "quasi-coincident" between fuzzy point and fuzzy set, introduced the concepts of an $(\in, \in Vq)$ -fuzzy subgroup and $(\in, \in Vq)$ -fuzzy subrings, and obtained some fundamental results pertaining to these notions. Fuzzy field and Fuzzy algebra over fuzzy field were researched by Nada [1], Gu wenxiang and Lu Tu[2] and Dang [3]. In this paper, $(\in, \in Vq)$ -fuzzy field and $(\in, \in Vq)$ -fuzzy algebra over $(\in, \in Vq)$ -fuzzy field are defined, and their some properties are studied.

2. Preliminaries

Let X be any non-empty set.

Definition 2.1. A map $\lambda: X \rightarrow [0,1]$ is called a fuzzy set of X.

Definition 2. 2. (Ming and Ming [6]). A fuzzy set λ of X of the from

$$\lambda(y) = \begin{cases} t(\neq 0) & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}$$

is said to be a fuzzy point with support x and value t and is denoted by x_t .

Definition 2. 3. (Ming and Ming [6]). A fuzzy point x_t is said to belong to (resp. be quasi-coincident with) a fuzzy set λ , written as $x_t \in \lambda$ (resp. $x_t \neq \lambda$) if $\lambda(x) \gg t$ (resp. $\lambda(x) + t > 1$). If $x_t \in \lambda$ or $x_t \neq \lambda$, then we write $x_t \in \forall q \lambda$.

For any $t,r \in [0,1], M(t,r)$ will denote min(t,r). $\overline{\in Vq}$ means $\in Vq$ does not hold.

Definition 2. 4. (Gu and Lu [2]). Lex X be a field and F a fuzzy set of X. If the following conditions hold:

(I)
$$F(x+y) \ge F(x) \land F(y), x, y \in X;$$

$$(I)F(-x)\geqslant F(x), x\in X;$$

$$(\mathbb{I})F(xy)\geqslant F(x) \wedge F(y), x,y \in X;$$

$$(N) F(x^{-1}) \geqslant F(x), x \neq 0 \in X.$$

We call F a fuzzy field of X.

Definition 2. 5. (Gu. and Lu. [2]) Let F be a fuzzy field of the field X. Y a algebra over X and A a fuzzy set of Y. Suppose the following conditions holds:

(I)A(x+y)
$$\geqslant$$
A(x) \land A(y),x,y \in Y;

(I)
$$A(\lambda x) \geqslant F(\lambda) \land A(x), \lambda \in X$$
 and $y \in Y$;

$$(\mathbb{I}) A(xy) \geqslant A(x) \land A(y), x, y \in Y;$$

$$(N) F(1) \geqslant A(x), x \in Y.$$

Then we call A a fuzzy algebra over fuzzy field F.

3.
$$(\in, \in \lor q)$$
- fuzzy field

Definition 3. 1. Let X be a field and F a fuzzy set of X. If for all $x,y \in X$ and $t,r \in (0,1]$, the following conditions hold:

(I)
$$x_t, y_t \in F \Rightarrow (x+y)_{M(t,r)} \in VqF;$$

$$(\mathbb{I})x_t \in F \Rightarrow (-x)_t \in VqF;$$

$$(\mathbb{I}) x_t, y_r \in F \Rightarrow (xy)_{M(t,r)} \in \bigvee qF;$$

$$(\mathbb{N}) \mathbf{x}_t \in \mathbb{F} (\mathbf{x} \neq 0) \Rightarrow (\mathbf{x}^{-1})_t \in \mathbb{V} \times \mathbb{F}.$$

we call F an $(\in, \in Vq)$ -fuzzy field of X.

Remark 3.1. The condition (I) in Definition 3.1 is equivalent to

$$(I')F(x+y) \ge M(F(x),F(y),0.5),x,y \in X;$$

The condition (I) of Definition 3.1 is equivalent to

$$(I')F(-x) \geqslant M(f(x), 0.5), x \in X;$$

The condition (II) of Definition 3.1 is equivalent to

$$(\mathbb{I}')F(xy) \geqslant M(F(x),F(y),0.5),x,y \in X;$$

The condition (N) of Definition 3.1 is equivalent to

$$(N')F(x^{-1}) \ge M(F(x), 0.5), x \ne 0 \in X.$$

Remark 3. 2. we note that if F is a fuzzy field of X according to be Definition 2. 4, then F is an $(\in, \in \lor q)$ -fuzzy field of X, but the converse is not true.

proposition 3. 1. If F is an $(\in, \in \lor q)$ -fuzzy field of X then

$$(1)F(0) \ge M(F(x), 0.5), x \in X;$$

$$(\mathbb{I})F(1) \geqslant M(F(x), 0.5), x \in X.$$

proposition 3. 2. Let X and Y be fields and f a homomorphism of X into Y. Suppose that F is an $(\in, \in \lor q)$ -fuzzy field of X and G is an $(\in, \in \lor q)$ -fuzzy field of Y. Then

(I)
$$f(F)$$
 is an $(\in, \in \lor q)$ -fuzzy field of Y.

(I)
$$f^{-1}(G)$$
 is an $(\in, \in Vq)$ -fuzzy field of X.

4. $(\in, \in \lor q)$ -fuzzy algebra over $(\in, \in \lor q)$ -fuzzy field

Definition 4. 1. Let F be an $(\in, \in Vq)$ -fuzzy field of the field X, Y a algebra over X and A a fuzzy set of Y. If for all $x,y \in Y$, $\lambda \in X$ and $t,\gamma \in (0,1]$, the following conditions hold:

$$(I)x_t,y_r \in A \Rightarrow (x+y)_{M(t,r)} \in VqA;$$

$$(\mathbb{I})_{x_t \in A}, \lambda_r \in F \Rightarrow (\lambda x)_{M(t,r)} \in \bigvee qA;$$

$$(\mathbb{I})x_t \in A, y_r \in A \Rightarrow (xy)_{M(t,r)} \in V \neq A;$$

$$(N)F(1) \ge M(A(x), 0.5).$$

Then we call A an $(\in, \in V|q)$ -fuzzy algebra over $(\in, \in V|q)$ -fuzzy field F.

Remark 4. 1. The condition (I) in definition 4. 1 is equivalent to

 $(I')A(x+y) \ge M(A(x),A(y),0.5),x,y \in Y;$

The condition (I) of Definition 4. 1 is equivalent to

 $(I')A(\lambda x) \geqslant M(F(\lambda),A(x),0.5),\lambda \in X,x \in Y;$

The condition (I) of Definition 4. 1 is equivalent to

 $(\mathbb{I}')A(xy) \geqslant M(A(x),A(y),0.5),X,y \in Y;$

proof. It is only proved that (I) is equivalent to (I').

(I) \Rightarrow (I'): Let $\lambda \in X, x \in Y$. Let $M(F(\lambda), A(x)) < 0.5$. Assume that $A(\lambda x) < M(F(\lambda), A(x))$. Choose t such that $A(\lambda x) < t < M(F(\lambda), A(x))$. The $\lambda_t \in F, x_t \in A$ but $(\lambda x)_t \in Vq$ A which contradicts (I). So A $(\lambda x) > M(F(\lambda), A(x))$. Next, Let $M(F(\lambda), A(x)) > 0$. 5. Assume that $A(\lambda x) < 0.5$. Then $\lambda_{0.5} \in F, x_{0.5} \in A$, but $(\lambda x)_{0.5} \in Vq$ A, a contradiction. Hence (I') holds.

 $(\mathbb{I}')\Rightarrow(\mathbb{I})$. Let $\lambda_r \in F, x_t \in A$. Then $F(\lambda) \geqslant r$. $A(x) \geqslant t$. By (\mathbb{I}') , $A(\lambda x) \geqslant M(F(\lambda)), A(x), 0.5 \geqslant M(r,t,0.5)$. Thus, $A(\lambda x) \geqslant M(r,t)$, if r or $t \leqslant 0.5$ and $A(\lambda x) \geqslant 0.5$, if r,t > 0.5. Hence, $(\lambda x)_{M(t,r)} \in V$ qA.

Remark 4. 2. We note that if A is a fuzzy algebra over fuzzy field F according to be Definition 2. 5, then A is an $(\in, \in Vq)$ -fuzzy algebra over $(\in, \in Vq)$ -fuzzy field F according to the Definition 4. 1. But the converse is not trus.

proposition 4.1. If A is an $(\in, \in \lor q)$ -fuzzy algebra over an $(\in, \in \lor q)$ -fuzzy field F, then $F(0) \geqslant M(A(x), 0.5)$.

Proposition 4. 2. Let F be an $(\in, \in Vq)$ -fuzzy field of the field X, Y a algebra over X and A a fuzzy set of Y. Then A is an $(\in, \in Vq)$ -fuzzy algebra over an $(\in, \in Vq)$ -fuzzy field F iff

(I) for any $\lambda, \mu \in X$ and $x, y \in Y$;

 $A(\lambda x + \mu y) \geqslant M(F(\lambda), F(\mu), A(x), A(y), 0.5);$

(\mathbb{I}) for any $x,y \in Y$,

 $A(xy) \geqslant M(A(x), A(y), 0.5);$

$$(II)F(1) \ge M(A(x), 0.5).$$

Proposition 4. 3. Let Y and Z be algebras over the field X, f a algebraic homomorphism of Y into Z and A a fuzzy set of Z. If A fuzzy algebra over an $(\in, \in \lor q)$ -fuzzy field F. Then $f^{-1}(A)$ is an $(\in, \in \lor q)$ -fuzzy algebra over $(\in, \in \lor q)$ -fuzzy field F.

Proof. (I) For any $\lambda, \mu \in X$ and $x, y \in Y$,

$$f^{-1}(A)(\lambda x + \mu y) = A(f(\lambda x + \mu y))$$

$$= A(\lambda f(x) + \mu f(y)) \geqslant M(F(\lambda), A(f(x)), F(\mu), A(f(y)), 0.5)$$

$$= M(F(\lambda), f^{-1}(A)(x), F(\mu), f^{-1}(A)(y), 0.5)$$

$$(I) \text{For any } x, y \in Y,$$

$$f^{-1}(A)(xy) = A(f(xy)) = A(f(x)f(y))$$

$$\geqslant M(A(f(x)), A(f(y)), 0.5)$$

$$= M(f^{-1}(A)(x), f^{-1}(A)(y), 0.5$$

(\mathbb{I}) For any $x \in Y$,

$$F(1) \ge M(A(f(x)), 0.5) = M(f^{-1}(A)(x), 0.5)$$

Hence $f^{-1}(A)$ is an $(\in, \in Vq)$ -fuzzy algebra over $(\in, \in Vq)$ -fuzzy field F.

Proposition 4. 4. Let Y and Z be algebras over the field X, f an algebraic homomorphism of Y into Z and A a fuzzy set of Y. If A an $(\in, \in Vq)$ -fuzzy algebra over $(\in, \in Vq)$ -fuzzy field F. Then f(A) is an $(\in, \in Vq)$ -fuzzy algebra over $(\in, \in Vq)$ -fuzzy field F.

Proof. (I) For any $x,y \in Z$.

$$f(A)(x+y) = \sup_{\substack{f(z)=x+y\\f(\overline{y})=y}} A(z) \geqslant \sup_{\substack{f(\overline{x})=x\\f(\overline{y})=y}} A(\overline{x}+\overline{y})$$

$$\geqslant \sup_{\substack{f(\overline{x})=x\\f(\overline{y})=y}} M(A(\overline{x}), A(\overline{y}), 0.5)$$

$$= M(\sup_{\substack{f(\overline{x})=x\\f(\overline{y})=y}} A(\overline{x}), \sup_{\substack{f(\overline{y})=y\\f(\overline{y})=y}} A(\overline{y}), 0.5)$$

$$= M(f(A)(x), f(A)(y), 0.5).$$
(I) For all $x \in Z$ and $\lambda \in X$,

$$f(A)(\lambda x) = \sup_{f(z) = \lambda x} A(z) = \sup_{f(z) = x} A(\lambda z)$$

$$\geqslant \sup_{f(z) = x} M(F(\lambda), A(z), 0.5)$$

$$= M(F(\lambda), \sup_{f(z) = x} A(z), 0.5)$$

$$= M(F(\lambda), f(A)(x), 0.5),$$

$$(II) For all x, y \in Z,$$

$$f(A)(xy) = \sup_{\substack{f(z) = xy \\ f(\overline{y}) = y}} A(z) \geqslant \sup_{\substack{f(\overline{x}) = x \\ f(\overline{y}) = y}} A(\overline{x}, \overline{y}),$$

$$\geqslant \sup_{\substack{f(\overline{x}) = x \\ f(\overline{y}) = y}} M(A(\overline{x}), A(\overline{y}), 0.5)$$

$$= M(\sup_{\substack{f(\overline{x}) = x \\ f(\overline{y}) = y}} A(\overline{x}), \sup_{\substack{f(\overline{y}) = y \\ f(\overline{y}) = y}} A(\overline{y}), 0.5)$$

$$= M(f(A)(x), f(A)(y), 0.5).$$

$$(IV). For all z \in Y, F(1) \geqslant M(A(z), 0.5). Hence, for all x \in Z,$$

$$F(1) \geqslant \sup_{\substack{f(z) = x \\ f(z) = x}} M(A(z), 0.5) = M(\sup_{\substack{f(z) = x \\ f(z) = x}} A(z), 0.5)$$

$$= M(f(A)(x), 0.5).$$

. . . .

References.

- [1]S. Nanda, Fuzzy algebras over a fuzzy fields, Fuzzy sets and Systems 37 (1990) 99-103
- [2] Wenxiang Gu and Tu Lu, Fuzzy algebras over fuzzy fields redefined, Fuzzy sets and Systems 53(1993) 105-107.
- [3] Faning Dang, Fuzzy algebras and fuzzy quotient algebra, Fuzzy Systems and Mathematics 4(1996) 68-75.
- [4]S. K. Bhakat and P. Das, (€, € Vq)-fuzzy subgroup, Fuzzy sets and systems 80 (1996) 359-368.
- [5]S. K. Bhakat and P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems 81 (1996) 383-393.
- [6] P. P. Ming and L. Y. Ming, Fuzzy topology 1. Neighbourhood structures of a fuzzy point and Moore Smith convergence. J. Math. Anal. Appl. 76(1980) 571 579