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ABSTRACT. To obtain the effective rule output from the rule relevancy #nd the rule consequent in
fuzzy modelling inference process we can use an operator which is called RHT operator. The possibili-
ties of its construction are studied.

Keywords: Triangular norm, Uninorm, Aggregation operator.
Supported by grants VEGA 1/5229/98, 1/4209/97

Fuzzy modelling rule based inference process (FUMIP) can i onsidered in four-step
algorithm (Yager [12]), (Yager and Filev [13]). Suppose that a rule base  consists of a collection
of nrules in the form ‘

if Vis A, then U is B,
where A;and B; are fuzzy sets of X and Y respectively.

L.step : (matching step) Determine a relevance 7; of each rule for a giveni input value.
E.g. 7, = Ai(x ), where x is a crisp input or 7; = Max (A; AC), where C is|an fuzzy input [5].

2.step : Determine an effective fuzzy output of each rule. We assume thai this process is
pointwise, i.e. ‘

F(y) = h(r;, B{y))
E.g F(y) = Min{r, B(y)} or Fy)=Max{(1-r)), B{y)} (Zadeh [14])

3. step: Aggregation of individual rule outputs
F(y) = Agg(F (), Fx(y), ... Fi(¥))

Eg. F(y) = Min{F(y), Fx(y), ...., Fu(y)}
or

F(y) = Max {F(y), Fx(y), ...., Fy(¥)}
or

F(y) = Uni (F,(y), Fx(y), ..., Fu(y))
where the n-ary operation Uni is an uninorm [2], [3], [12].

4. step: Defuzzification

Example 1. The next picture shows a simple example of FUMIP with two fuzzy rules in the
form: If Vis A; then U is B; (A, B; are triangular fuzzy numbers [6]), with a crisp input X,
matching values 7, = Ai(x*), effective fuzzy inputs F(y) = Min{r,B{(y)} and with an
aggregation operator

F(y) = Max {F (y), F5(y)}



The defuzzification step is omitted.

Picture 1

We focus our interest to the second and third steps and to the relations between them.
Assume that there exists some rule with zero relevancy, ie. 7, = 0. If 7, = 0 then n-th rule
provides no information regarding output values, i.e., F, should not make any distinction
between the values. Therefore

F.(y)=const=c¢
It is a natural requirement that such output plays no role in the aggregation, i.c.

Agg(Fl(y), FZ(Y)9 seery Fn~l(Y), C) = Agg(FI(Y)a FZ(Y)’ evey Fn- (Y))
It means that c would be the identity element of the aggregation [121,[7].




Example 2. Simple examples of aggregation operators can be create from associative binary
operations:
a) Agg (X,X25-:Xp) = T(X},Xp,...,X,), where T is a t-norm (associative commutative binary
operation on the unit square for which T(x,1) = x), T(x,,Xy,...,X,) = T( T(xi,xz,...,xn_l),xn),
T(x) = x. In this case the identity element c = 1.
b) Agg (X, X3Xp) = S(X|,Xp,....X,), Where S is a t-conorm (associative commutative binary
operation on the unit square for which S§(x,0) = x), S(X;,X5,-.Xp) = S(S(X;,X25--sXp1): X0
S(x) = x. In this case the identity element ¢ = 0. |
©) Agg (X|,Xy-.Xy) = Uni(X;,X,...,X,), where Uni is a uninorm, i.e. agsociative commutative
binary operation on the unit square for which Uni(x,e) = x for a given ele:Enent ¢ € (0,1) and any
x € [0,1], Uni(x,x,,....x;) = Uni(Uni(X;,X,,...,Xp.1),X,) > Uni(x) = x. I
element c=e.
d) (three 7 operator) [12], [3]
n
[1x
i=1

P(x1,x3,..,Xp) = - - if {0;1} & {xq,x5,...,x,} ¢lse
HXi +H(1—Xi)
i=1 i=1

P(X,X,....Xy) = a, where a € {0; 1}. This aggregation operator has the identity element ¢ = 0,5.

this case the identity

The aggregation operators in Example 2 are associative. The next example shows a non
associative aggregation operator [9].
n
. . -1
Example 3. The aggregation operator L(x;,X5,...,X,) = Max{O,Mm{l,in —HT}} has
1 =l

the identity element ¢ = 0.5. See also [8] for another interesting examples of non associative
aggregation operators.

Definition of RET operator

To full determination of this type of FUMIP we need both an aggregation operator Agg (third
step) and a binary operator h (second step) which have the same special element c. Now we shall
concentrate our attention on the operator h.

Generally, h is a binary operation on the interval [0,1] having several specific properties [12].

Definition 1 . The operator h: [0; 1]2 — [0 1] 1s called Relevancy Transformation operator
(RET) with respect to the given identity element ¢ € [0 ; 1] iff |

Dh(L,b)=b

2) h(0,b) = ¢

3)If b, <b, thenh (a,b;) <h(ab,)

4)b = c then a,; <a, = h(a,, b) < h(a,b)

5)b=< ¢ thena,; <a, = h(a,;, b) > h(a,b)

for any a,b,a;,a,,b,,b, € [0; 1].

The first requirement says: if the i-th rule is completely fired (7 =1) then the effective input
is B;. The second one was already explained. Third condition is a reflection of the requirement
that we should not inverse the preference ordering of output values. The last conditions are



called i i . Remark that 4) and 5) imply h(a,c) = ¢ for any
a € [0,1]. The next example gives some trivial models of RET operator

Example 4. ([12])

a) Let T be a t-norm. Then h(a,b) = T(a,b) is RET operator with c =0
b) Let S be a t-conorm. Then h(a,b) = §(1-a,b) is RET operator with ¢ = 1
c) h(a,b) = Max{Min{a,b},Min{l - a;c},Min{b,c}}is RET operator for any ¢ € [0,1]
d) h(a,b) = ab + (1-a)c is RET operatoi' for any c € [0,1] (see Picture 4)

One class of RET operators ‘

There exist many binary operations on the unit square having required properties. Now we
give some class of polynomial binary operations which are RET operators

h(ab)=c+(b-c)a' =ab+(1-aY)c

where c is given identity element, ¢ € [0, 1], t € (0, «). The next pictures (Pictures 2 - 5) show

/

this operator forc = 0.5, t=2 and t =1 and their section for b= 0.9
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Picture 3. Graph h(?, 09), c=0.5, t=2
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Picture 4. Graph h(a,b),c=0.5, t= J Picture 5. Graph h(a, 0.9),c=0.5,t=1




It is possible to generalise this class of RET operators by adding a lower limit 8 of
acceptance of a rule and an upper limit @ of full acceptance of a rule. It means, firing values
less then 8 are vanishing and firing values greater then a are considered|to be full.

c a €[0,B]

h(a,b) = {c+——_(a' ~B') ae[B,a]
o =P

b a ela,l]

where c¢ - identity element ; ¢ € [0, 1].
B - lower limit of acceptance of a rule
a - lower limit of full acceptance of a rule, 8 < a
t € (0, ).
The next pictures (Pictures 6-7) show some special cases of such RET operators
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Picture 6. Graph h(a,b) Picture 7. Graph ljl(a, 0.9)
c=05p=02,0=08,t=2 c=05,3=02,0a=09,t=2

RET operators generated from t-norms

We have already seen that any t-norm can be considered as a RET opgrator with ¢ = 0.
Motivated by Example 4 we can tray to construct RET operator h as follaws:
h(a,b) =T(a,b) + T(1-a,c) :
where T is some t-norm, ¢ is a given element of the unit interval . It can li)e easily shown that for
such operator h 1), 2), 3) hold however 4) and 5) may be violated. It would be interesting to
characterise t-norm for which the operator h(a,b) = T(a,b) + T(1-a,c) is a RET operator. The next
Lemma is a direct consequence of the fact that RET operator satisfies h(a,c) = c.

Lemma. Let h(ab) = T(a,b) + T(l-a,c) be a RET operator for given ¢ e [0, 1], T be a t-norm.
Then for any a € [0, 1] it holds T(a,c) + T(1-a,c) = c.

Theorem. Let T be a t-norm with a continuous convex generator such that T(a,c) + T(1-a,c) =c
for some ¢ € (0; 1) and all a € [0;1]. Then h(a,b) = T(a,b) + T(l-a, c) is a|RET operator with
respect to the element c. ‘



Proof. Consider a t-norm T with continuous convex generator. Then T is z* copula ([10], Chapter
6) and therefore

a) < bl ,ay < b2 = T(al,az ) +T(b1 ,b2) 2 T(al ,b2) -!*T(bl ,az)

Now we prove 4), i.e.,: if b > ¢ then a; <a, = h(a,, b) < h(a,,b). Indeed

h(a;,b)—h(a;,b) =T(ay,b)+T(1-a,,c)-T(a;,b)~T(1-a;,c) = T(apy,b)-T(a;,b)+
+T(l1-ap,c)-T(l-a,c) =T(ap,b)-T(a;,b) +c—T(ay,c)—c+T(aj,c) =
=T(aj,c)+T(ay,b)-T(ay,c)—T(a;,b)20

Analogously we can prove 5), i.e., if b<c thena, <a, = h(a,, b) = h(a,,b).

Theorem allows to generate RET operators from convenient t-norms. It is clear that such
convenient t-norm is the product, i.e. T(a,b) = ab. The technique of the construction of
continuous t-norms T with a generator fulfilling T(a,c) + T(1-a,c) = ¢ 1s» already known [4],[1].
Moreover it is possible to construct some non continuous t-norms with given section [11]. The
characterisation of such t-norm with convex generator is an open problem.
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