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ABSTRACT. In the present paper, we show that in a ld
effect algebra E the set of all sharp elements forms an
lar lattice whose blocks are centers of blocks of E and

ttice ordered
orthomodu-
whose center

coincides with the center of the effect algebra E. Morgover, we ex-
tend the well-known result about connection between compatibility

and distributivity from the theory of orthomodular lattig
of lattice ordered effect algebras.

1. INTRODUCTION

Definition 1.1. [2] An effect algebra is a partial algebra F

e to the class

with partial binary

operation @ and two nullary operations 0 and 1 satisfying the following axioms:

(E1) a®b=0bPaif a®bis defined.
E2) (a®b)®c=a® (b c) if one side is defined.

(
(E3) for every a € E there exists a unique b € E such that ad b= 1.
(

E4) if 1 @ a is defined then a = 0.

Having an effect algebra E, we can introduce a partial order < on F: a <b

iff dc: a®c=b. Wedenote bSa = ciff apc = b. It is easy
well defined partial operation. In [7], a class of partial stru
effect algebras, so-called D-posets, was introduced indepen
for D-posets are based on ©.

As usual, we denote 1 © z by z’. Further, we denote a L
a <biff b <a' If Eis an effect algebra and (F, <) is a latt
lattice ordered. Every lattice ordered effect algebra satisfies
: (aVb) =a' AV. Lattice ordered effect algebras are calle

Examples of lattice ordered effect algebras are :

e Any horizontal sum of two MV-algebras (c.f. [1]).

e Any horizontal sum of an OML and an MV-algebra.
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e Any direct product of an OML and an MV-algebr

In an effect algebra E, a pair of elements a, b is called
there are aq,b;,c € F such that a, @ b; & c exists and a
In a lattice ordered effect algebra E, we have a ¢ b iff (a
(c.f. [8]) iff a® (bO (a A D)) exists (c.f. [10]).

In accordance with [10], we define a block in E as a m3
patible subset of E. Every element of E is in some bloc]
MV-algebra (introduced by Chang in [1]). can be defineq
effect algebra of mutually compatible elements.

In [10], it was proved that in a lattice ordered effect al
M of F has the following properties.

(1) a,b € M implies that a AbjaVvbe M.
(2) a,be M, a L bimply that a® b € M.
(3) a € M implies a’ € M.
(4) M is an MV-algebra.
We note that (2) and (3) mean that every block M is 3
E. In particular, a,b € M with a > b implies that e © b €

2)
3)
4)

2. COMPATIBILITY AND DISTRIBUTIVI

Theorem 2.1. Let E be a lattice ordered effect algebra. 4
are such that VA ezists in E and b & a for alla € A. T}

(a) b+ VA.
(b) V{bAa:a € A} exists in E and equals b A (VA).

Proof.
(a) For every a € A,
a< (b6 (@nb) < (b6 (VA) A
Therefore,
VA< (be ((VA) A D))

and this is equivalent to VA ¢ b.
First, let us prove

(1)

Assume d is a lower bound of {b& (bAa):a € A}.
b (bAa)= (bVa)©a. Evidently, d < (bV(VA))4
implies ¢ < (bV (VA)) © d and we have VA < (b
equivalent to d < (bV (VA)) & (VA). By part (a),

d<(bv(VA)) o (VA)=bo (bA

ANbo(bAa):ae A} =bo (bA

which completes the proof of (1).

DVA

a.

rompatible (a ¢ b) iff
=, Pc,b=bPec.
Vb)ob=a6 (aNb)

ywximal mutually com-
k. By [7] and [8], an
1 as a lattice ordered

gebra E, every block

L sub-effect algebra of
M.
'Y

Assumebe E, ACFE
ren

VvA))

Since b ++ a, we have
ba for all a € A. This
\V (VA)) © d which is
b & VA. Therefore,

vA))
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Now, let e be an upper bound of {bAa : @ € A}. Foral
and bo (bAe) < bO(bAa). Therefore, b0 (bAe) < A{
Applying (1), b6 (bAe) <bo (bA(VA)). Thus, bA

Moreover, bA (VA) is an upper bound of {dAa: a € 4

the proof.
O

Corollary 2.2. Let E be a lattice ordered effect algebra.
b ay. Then b A (aq Vazp ={(bAa))V(bAay).

Proof. Trivial, put A = {le,az} in part (b) of Theorem 2.1.

3. BLOCKS AND SHARP ELEMENTS

An element @ of an effect algebra is called sharp iff a A o’
sharp elements in an effect algebra F is denoted by Es.
An element a of an effect algebra F is called central iff

(1) The intervals [0, ] and [0, ¢'] are closed on @ operati

and z L y imply 2@y < b, where b € {a,d'}.
(2) Every z € F has a unique decomposition z =z, ®
and z, € [0, a'].
The set of all central elements of E (the center of F) is

T ALGEBRAS

la € A, bAa < bAe

hO (bAa) 1 a € A}
VA) < (bAe) <e.
1}. This completes

Assume b <> a,,

a

— 0. The set of all

on, i.e. z,y € [0, ]
,, where z; € [0, a}

denoted by C(E).

There is a natural, one-to-one correspondence between central elements and

direct decompositions of E. The center of every effect alg

effect algebra, which is a Boolean algebra in its own right.
further results concerning central elements.

Lemma 3.1. Let F be a lattice ordered effect algebra, a €
are equivalent :

(a) a is sharp.

(b) a is central in every block containing a.

(¢) a is central in some block.

Proof. ((a) = (b)) Assume a is sharp. Let M be a blo

a € M. Evidently, a is sharp in M. By, [9], an element z of
effect algebra is central iff z is sharp and « is compatible &

ebra forms a sub-
We refer to [5] for

E. The following

ck of E such that
an lattice ordered
ith every element.

Since every pair of elements in M is compatible, this impligs that @ is central

in M.
((b) = (c)) is trivial.

((c) => (a)) Assume a is central in some block M. Thg¢

and, since M is a sublattice of F, a is sharpin E. O
Corollary 3.2. Let E be a lattice ordered effect algebra.
Es =U{C(M): M is a block of E'}

Theorem 3.3. Let E be a lattice ordered effect algebra. T}

n a is sharp in M

ren
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(a) Es ts a sub-effect algebra of E.
(b) Es is a sublattice of I.

(c) Es is an orthomodular lattice.
Proof.

(a) Assume a,b€ Es,a Lb. Asa L b, we havea ¢ b
block M. By Lemma 3.1, a and b are central in
subalgebra of B, we have a® b € C(M) C Es. |
that @ € Fg implies ¢’ € Es.
Assume a,b € Fs. Note that ¢/ L aAb and b |
a & aAband P < aVb Applying Corollary 2.2

so a,b € M for some
M. Since C(M) is a

t remains to observe

. a A b. This implies
, we have

(b)

(@AB)A (@A) = (@Ab)A (@ V)= ((aAb)Ad

Thus, a A b is s%arp. Similarly, a,b € Es implies a
For all z,y € we have (z')) = ¢ and ¢ < y
z,y € Es C E we have z Az’ = 0. Thus Eg j

YV ((@anbd)AD)=0

vbe FE;s.
= ¢y < a'. For
5 an ortholattice. It

()

remains to prove the orthomodular law.
Assume z,y € Fs, z < y. Since 2’ L z, 2’ & =.

y' < z’ and this implies z’ <+ y’. Applying Corolld

g AzVy)=(@ Az)V(e'AY)=0

which implies y = z V (2’ A y), hence the orthomg

|

Lemma 3.4. Let E be a lattice ordered effect algebra, a
b are compatible in E iff they are compatible in Ejs.

Proof. Assume a,b € Es. By [8],in a D-lattice a ¢+ biff o
By above theorem, this equation is true in E iff it is true

Theorem 3.5. Let E be a lattice ordered effect algebra.
central iff a is central in every block of E.

Proof. Assume a is central in E. It is easy to check that
every element of E. Thus, a is in every block of E. By Ls

in every block of E since a € Ejs.
Assume that a is central in every block of E. Since a i
we see that a is compatible with every element of E. By

lattice ordered effect algebra E is central iff z is sharp an

Thus, @ is central. O

Theorem 3.6. Let E be a lattice ordered effect algebra.

pairwise compatible subset of Es. Then C = C(M) for
Moreover, for every block M of E with M O C, C = C(]

Since z < y, we have
iy 2.2,

vyl____yl

dular law is satisfied.

be Es. Then a and

O (anb) = (avd)Sb.
in Es. O

An element a of E s

a is compatible with
mma 3.1, a is central

5 in every block of E,
[9], an element z of a
lz«ryforallye L.

Let C be a mazimal
some block M of E.
).
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Proof. By Lemma 3.4, C'is pairwise compatible in E. Hence there is some block
M D C in E. Evidently, C C C(M). On the other hand, 3ssume a € C'(M).
Then @ € Es and a ¢ for all ¢ € C. By maximality of C, e € C. O

Recall that F is a full sublattice of a (not necessary complete) lattice L iff I
is a sublattice which contains all existing joins and meets of|elements of F'.

Theorem 3.7. Let E be a lattice ordered effect algebra. Then Eg is a full
sublattice of I.

Proof. Let A C Es be such that VA exists in E. We have to show that VA € Es.
Observe that (Ageaa’) ¢ @ for all a € A. Hence (Azead’) > a for all a € A.
By Theorem 2.1, we have

(VA)A(VA) = (Vaea@) A (Ageaa’) =
= Vaea(@ A (Aaeat)) < Vaealapa') =0

Thus VA € Es.
Dually, NANA€ Es. O

Corollary 3.8. Let E be an effect algebra such that (E, <) ig a complete lattice.
Then Es is a complete lattice.

Proof. Trivial, by Theorem 3.7. O

Remark 3.9. Assume E is a lattice ordered effect algebra.

(1) Evidently, F = Eg iff E is an orthomodular lattice (under the orthocom-
plementation a’ = 16a and a partial operation @ defined by a®b = aVb
iff a <¥'.

(2) If E is a horizontal sum of two MV-algebras then E fis a horizontal sum
(0 — 1-pasting) of two Boolean algebras.

(3) If E is a direct product of an orthomodular lattice L and an MV-algebra
M, then Eg is the direct product of L and a Boolean algebra C'(M).

(4) If E is a block-finite lattice ordered effect algebra then Es is a block
finite orthomodular lattice - this is an obvious conseguence of Theorem
3.6. The converse does not hold.
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