ON SHARP ELEMENTS IN LATTICE ORDERED EFFECT ALGEBRAS

GEJZA JENČA AND ZDENKA RIEČANOVÁ

ABSTRACT. In the present paper, we show that in a lattice ordered effect algebra E the set of all sharp elements forms an orthomodular lattice whose blocks are centers of blocks of E and whose center coincides with the center of the effect algebra E. Moreover, we extend the well-known result about connection between compatibility and distributivity from the theory of orthomodular lattice to the class of lattice ordered effect algebras.

1. Introduction

Definition 1.1. [2] An effect algebra is a partial algebra E with partial binary operation \oplus and two nullary operations 0 and 1 satisfying the following axioms:

- (E1) $a \oplus b = b \oplus a$ if $a \oplus b$ is defined.
- (E2) $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ if one side is defined.
- (E3) for every $a \in E$ there exists a unique $b \in E$ such that $a \oplus b = 1$.
- (E4) if $1 \oplus a$ is defined then a = 0.

Having an effect algebra E, we can introduce a partial order \leq on $E: a \leq b$ iff $\exists c: a \oplus c = b$. We denote $b \ominus a = c$ iff $a \oplus c = b$. It is easy to check that \ominus is a well defined partial operation. In [7], a class of partial structures equivalent to effect algebras, so-called D-posets, was introduced independently. The axioms for D-posets are based on \ominus .

As usual, we denote $1 \ominus x$ by x'. Further, we denote $a \perp b$ iff $a \ominus b$ exists iff $a \leq b'$ iff $b \leq a'$. If E is an effect algebra and (E, \leq) is a lattice, then E is called lattice ordered. Every lattice ordered effect algebra satisfies the De Morgan law: $(a \vee b)' = a' \wedge b'$. Lattice ordered effect algebras are called D-lattices in [8]. Examples of lattice ordered effect algebras are:

- Any horizontal sum of two MV-algebras (c.f. [1]).
- Any horizontal sum of an OML and an MV-algebra.

¹⁹⁹¹ Mathematics Subject Classification. Primary 06F05; Secondary 03G25,81P10. Key words and phrases. effect algebra, MV-algebra, orthomodular lattice. This research is supported by grant G-1/4297/97 of the MŠ SR, Slovakia.

GEJZA JENČA AND ZDENKA RIEČANOVÁ

• Any direct product of an OML and an MV-algebra.

In an effect algebra E, a pair of elements a, b is called compatible $(a \leftrightarrow b)$ iff there are $a_1, b_1, c \in E$ such that $a_1 \oplus b_1 \oplus c$ exists and $a = a_1 \oplus c$, $b = b_1 \oplus c$. In a lattice ordered effect algebra E, we have $a \leftrightarrow b$ iff $(a \lor b) \ominus b = a \ominus (a \land b)$ (c.f. [8]) iff $a \oplus (b \ominus (a \land b))$ exists (c.f. [10]).

In accordance with [10], we define a block in E as a maximal mutually compatible subset of E. Every element of E is in some block. By [7] and [8], an MV-algebra (introduced by Chang in [1]). can be defined as a lattice ordered effect algebra of mutually compatible elements.

In [10], it was proved that in a lattice ordered effect a gebra E, every block M of E has the following properties.

- (1) $a, b \in M$ implies that $a \wedge b, a \vee b \in M$.
- (2) $a, b \in M$, $a \perp b$ imply that $a \oplus b \in M$.
- (3) $a \in M$ implies $a' \in M$.
- (4) M is an MV-algebra.

We note that (2) and (3) mean that every block M is a sub-effect algebra of E. In particular, $a, b \in M$ with $a \ge b$ implies that $a \ominus b \in M$.

2. Compatibility and distributivity

Theorem 2.1. Let E be a lattice ordered effect algebra. Assume $b \in E$, $A \subseteq E$ are such that $\forall A$ exists in E and $b \leftrightarrow a$ for all $a \in A$. Then

- (a) $b \leftrightarrow \forall A$.
- (b) $\vee \{b \wedge a : a \in A\}$ exists in E and equals $b \wedge (\vee A)$. Proof.
 - (a) For every $a \in A$,

$$a \leq (b \ominus (a \land b))' \leq (b \ominus ((\lor A) \land b))'$$

Therefore,

$$\forall A \leq (b \ominus ((\forall A) \land b))'$$

and this is equivalent to $\vee A \leftrightarrow b$.

(b) First, let us prove

$$(1) \qquad \qquad \wedge \left\{ b \ominus (b \land a) : a \in A \right\} = b \ominus \left(b \land (\lor A) \right)$$

Assume d is a lower bound of $\{b \ominus (b \land a) : a \in A\}$. Since $b \leftrightarrow a$, we have $b \ominus (b \land a) = (b \lor a) \ominus a$. Evidently, $d \le (b \lor (\lor A)) \ominus a$ for all $a \in A$. This implies $a \le (b \lor (\lor A)) \ominus d$ and we have $\lor A \le (b \lor (\lor A)) \ominus d$ which is equivalent to $d \le (b \lor (\lor A)) \ominus (\lor A)$. By part (a), $b \leftrightarrow \lor A$. Therefore,

$$d \leq (b \vee (\vee A)) \ominus (\vee A) = b \ominus (b \wedge (\vee A))$$

which completes the proof of (1).

ON SHARP ELEMENTS IN LATTICE ORDERED EFFECT ALGEBRAS

Now, let e be an upper bound of $\{b \land a : a \in A\}$. For all $a \in A$, $b \land a \leq b \land e$ and $b \ominus (b \land e) \leq b \ominus (b \land a)$. Therefore, $b \ominus (b \land e) \leq \land \{b \ominus (b \land a) : a \in A\}$. Applying (1), $b \ominus (b \land e) \leq b \ominus (b \land (\lor A))$. Thus, $b \land (\lor A) \leq (b \land e) \leq e$. Moreover, $b \land (\lor A)$ is an upper bound of $\{b \land a : a \in A\}$. This completes the proof.

Corollary 2.2. Let E be a lattice ordered effect algebra.

Assume $b \leftrightarrow a_1$,

 $b \leftrightarrow a_2$. Then $b \wedge (a_1 \vee a_2) = (b \wedge a_1) \vee (b \wedge a_2)$.

Proof. Trivial, put $A = \{a_1, a_2\}$ in part (b) of Theorem 2.1.

3. BLOCKS AND SHARP ELEMENTS

An element a of an effect algebra is called sharp iff $a \wedge a' \models 0$. The set of all sharp elements in an effect algebra E is denoted by E_s .

An element a of an effect algebra E is called central iff

- (1) The intervals [0, a] and [0, a'] are closed on \oplus operation, i.e. $x, y \in [0, b]$ and $x \perp y$ imply $x \oplus y < b$, where $b \in \{a, a'\}$.
- (2) Every $x \in E$ has a unique decomposition $x = x_1 \oplus x_2$, where $x_1 \in [0, a]$ and $x_2 \in [0, a']$.

The set of all central elements of E (the center of E) is denoted by C(E). There is a natural, one-to-one correspondence between central elements and direct decompositions of E. The center of every effect algebra forms a subeffect algebra, which is a Boolean algebra in its own right. We refer to [5] for further results concerning central elements.

Lemma 3.1. Let E be a lattice ordered effect algebra, $a \in E$. The following are equivalent:

- (a) a is sharp.
- (b) a is central in every block containing a.
- (c) a is central in some block.

Proof. ((a) \Longrightarrow (b)) Assume a is sharp. Let M be a block of E such that $a \in M$. Evidently, a is sharp in M. By, [9], an element x of an lattice ordered effect algebra is central iff x is sharp and x is compatible with every element. Since every pair of elements in M is compatible, this implies that a is central in M.

 $((b) \Longrightarrow (c))$ is trivial.

 $((c) \Longrightarrow (a))$ Assume a is central in some block M. Then a is sharp in M and, since M is a sublattice of E, a is sharp in E. \square

Corollary 3.2. Let E be a lattice ordered effect algebra.

 $E_S = \bigcup \{C(M) : M \text{ is a block of } E\}$

Theorem 3.3. Let E be a lattice ordered effect algebra. Then

GEJZA JENČA AND ZDENKA RIEČANOVÁ

- (a) E_S is a sub-effect algebra of E.
- (b) E_S is a sublattice of E.

Proof.

(c) E_s is an orthomodular lattice.

(a) Assume $a, b \in E_S$, $a \perp b$. As $a \perp b$, we have $a \leftrightarrow b$ so $a, b \in M$ for some block M. By Lemma 3.1, a and b are central in M. Since C(M) is a subalgebra of E, we have $a \oplus b \in C(M) \subseteq E_S$. It remains to observe that $a \in E_S$ implies $a' \in E_S$.

(b) Assume $a, b \in E_S$. Note that $a' \perp a \wedge b$ and $b' \perp a \wedge b$. This implies $a' \leftrightarrow a \wedge b$ and $b' \leftrightarrow a \vee b$. Applying Corollary 2.2, we have

$$(a \wedge b) \wedge (a \wedge b)' = (a \wedge b) \wedge (a' \vee b') = ((a \wedge b) \wedge a') \vee ((a \wedge b) \wedge b') = 0$$

Thus, $a \wedge b$ is sharp. Similarly, $a, b \in E_S$ implies $a \vee b \in E_S$.

(c) For all $x, y \in E$ we have (x')' = x and $x \leq y \implies y' \leq x'$. For $x, y \in E_S \subseteq E$ we have $x \wedge x' = 0$. Thus E_S is an ortholattice. It remains to prove the orthomodular law.

Assume $x, y \in E_S$, $x \le y$. Since $x' \perp x$, $x' \leftrightarrow x$. Since $x \le y$, we have $y' \le x'$ and this implies $x' \leftrightarrow y'$. Applying Corollary 2.2,

$$x' \wedge (x \vee y') = (x' \wedge x) \vee (x' \wedge y') = 0 \vee y' = y'$$

which implies $y = x \lor (x' \land y)$, hence the orthomodular law is satisfied.

Lemma 3.4. Let E be a lattice ordered effect algebra, $a, b \in E_S$. Then a and b are compatible in E iff they are compatible in E_S .

Proof. Assume $a, b \in E_S$. By [8], in a D-lattice $a \leftrightarrow b$ iff $a \ominus (a \land b) = (a \lor b) \ominus b$. By above theorem, this equation is true in E iff it is true in E_S . \square

Theorem 3.5. Let E be a lattice ordered effect algebra. An element a of E is central iff a is central in every block of E.

Proof. Assume a is central in E. It is easy to check that a is compatible with every element of E. Thus, a is in every block of E. By Lemma 3.1, a is central in every block of E since $a \in E_S$.

Assume that a is central in every block of E. Since a is in every block of E, we see that a is compatible with every element of E. By [9], an element x of a lattice ordered effect algebra E is central iff x is sharp and $x \leftrightarrow y$ for all $y \in E$. Thus, a is central. \square

Theorem 3.6. Let E be a lattice ordered effect algebra. Let C be a maximal pairwise compatible subset of E_S . Then C = C(M) for some block M of E. Moreover, for every block M of E with $M \supseteq C$, C = C(M).

Proof. By Lemma 3.4, C is pairwise compatible in E. Hence there is some block $M \supseteq C$ in E. Evidently, $C \subseteq C(M)$. On the other hand, assume $a \in C(M)$. Then $a \in E_S$ and $a \leftrightarrow c$ for all $c \in C$. By maximality of C, $a \in C$. \square

Recall that F is a full sublattice of a (not necessary complete) lattice L iff F is a sublattice which contains all existing joins and meets of elements of F.

Theorem 3.7. Let E be a lattice ordered effect algebra. Then E_S is a full sublattice of E.

Proof. Let $A \subseteq E_S$ be such that $\forall A$ exists in E. We have to show that $\forall A \in E_S$. Observe that $(\land_{a \in A} a') \leftrightarrow a'$ for all $a \in A$. Hence $(\land_{a \in A} a') \leftrightarrow a$ for all $a \in A$. By Theorem 2.1, we have

$$(\vee A) \wedge (\vee A)' = (\vee_{a \in A} a) \wedge (\wedge_{a \in A} a') =$$

$$= \vee_{a \in A} (a \wedge (\wedge_{a \in A} a')) \leq \vee_{a \in A} (a \wedge a') = 0$$

Thus $\forall A \in E_S$.

Dually, $\land A \in E_S$. \square

Corollary 3.8. Let E be an effect algebra such that (E, \leq) is a complete lattice. Then E_S is a complete lattice.

Proof. Trivial, by Theorem 3.7. □

Remark 3.9. Assume E is a lattice ordered effect algebra.

- (1) Evidently, $E = E_S$ iff E is an orthomodular lattice (under the orthocomplementation $a' = 1 \ominus a$ and a partial operation \oplus defined by $a \oplus b = a \lor b$ iff $a \le b'$.
- (2) If E is a horizontal sum of two MV-algebras then E_S is a horizontal sum (0-1-pasting) of two Boolean algebras.
- (3) If E is a direct product of an orthomodular lattice L and an MV-algebra M, then E_S is the direct product of L and a Boolean algebra C(M).
- (4) If E is a block-finite lattice ordered effect algebra then E_S is a block finite orthomodular lattice this is an obvious consequence of Theorem 3.6. The converse does not hold.

REFERENCES

- 1. Chang, C.C., Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 89 (1959), 74-80.
- 2. Foulis, D.J., Bennett, M.K., Effect algebras and unsharp quantum logics, Found. Phys. 20 (1994), 1331-1352.
- 3. Giuntini, R., Greuling, H., Toward a formal language for unsharp properties, Found. Phys. 19 (1994), 769-780.
- 4. Giuntini, R., Greuling, H., Toward a formal language for unsharp properties, Found. Phys. 19 (1994), 769-780.

GEJZA JENČA AND ZDENKA RIEČANOVÁ

- 5. Greechie, R., Foulis, D., Pulmannová, S. The center of an effect algebra, Order 12 (1995), 91-106.
- 6. Kalmbach, G., Riečanová, Z. An axiomatization for abelian relative inverses, Dem. Math. 27 (1994) 684-699.
- 7. Kôpka, F., Chovanec, F., *D-posets*, Math. Slovaca 44 (1994), 21-34.
- 8. Kôpka, F., Chovanec, F., Boolean D-posets, Tatra Mt. Math. Publ. 10 (1997), 183-197.
- 9. Riečanová. Z., Compatibility and central elements in effect algebras, Tatra Mt. Math. Publ. 10 (1997), 119-128.
- 10. Riečanová. Z., Generalization of blocks for D- lattices and lattice ordered effect algebras, preprint (1999)

DEPARTMENT OF MATHEMATICS, FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY, SLOVAK UNIVERSITY OF TECHNOLOGY, ILKOVIČOVA 3, 812 19 BRATISLAVA, SLOVAKIA

E-mail address, G. Jenča: jenca@kmat.elf.stuba.sk

E-mail address, Z. Riečanová: zriecan@.elf.stuba.sk