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ABSTRACT. The aim of this article is to discuss a type of convergepce, compactness and
continuity based on the concept of a nearness.

In the first part we restrict our attention to the real case. Section|4 presents a way how
to generalize the nearness for an arbitrary universe.

1. PRELIMINARIES

The purpose of this paper is to continue the study of a fuzzification of metric properties
of real numbers, based on the concept of a nearness, investigated, for example, already in
papers [2], [3], [4] and [5]. In [2] is the nearness introduced as a|binary fuzzy relation N
on R with some natural properties, corresponding to the algebraic, topological and lattice
structures of real axis:

(1) N(z,z) =1foreachz € R

(2) N(z,y) = N(y,z) for each z,y € R

(3) N(z,y) > N(z,z) for each z,y,z € R, such that z <y < 2

(4) lim z, = o0 =>> lim N(zy,zo) =0, for each zo €R
n—o00 n—o0

(5) N(z,y) = N(z + 2,y + 2) for each z,y,z€ R

By [2] a binary fuzzy relation N(z,y) on R is the nearness if and only if there exists
such a non-increasing function b : [0, oo] — [0, 1] such that b(0) = 1, Jim b(z) = 0 and

N(z,y) =b(|lz —y|) foreach z,y €R

This function b is determined uniquely and it is called the nearness-generating function.
Compare also [1] and [6].

In the following article we utilize just this approach.
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Further, let us recall, that a sequence of real numbers {z,} is
a real number g is called its N-limit (z,, 2 zp) if

lim N(z,,z0) = 1.
n-+00

called N-convergent and

This N-convergence enables to define an N-continuity for real functions of a real variable

[2]:

Suppose zo € R. A function f : R — R is said to be N-continuous at zo if for each

€ < 1 there exists § < 1 such that for each z € R:

N(zq,z) > 6 = N(f(z0), f(2)) > .

As usual, a function is said to be continuous on a set A C R if|it is continuous at each

T € A.

And finally, if for each € < 1 there exists < 1 such that for each z,y € ACR:

N(z,y) > 6 = N(f(z), f(¥)) > &

the function f is said to be uniformly N-continuous on A.

It can be shown (see [2]), that a function f is N-continuous at
sequence {z,} of real numbers

lim N(za,o0) =1=> lim N(f(zn), f(z0))

n—o0

It is evident, that the family of N-convergent sequences, and th
N-continuous and uniformly N-continuous functions depends sub
nearness and thus on the nearness-generating function b.

2. N-CONVERGENCE IN R

B point ¢ just if for any

=1.

efore also the family of
antively on the concrete

N-convergence or N-divergence is, in fact, influenced only by the behaviour of the
corresponding nearness-generating function b in a right neighbourhood of 0.

From this point of view we can divide the set of all nearness-generating functions into

3 subsets:

(a) b(x) = 1~ <= z — 0*. (In other words: b(0") =1 and b(z) > 1 whenever z > 0.)

(b) There exists K < 1, such that for each £ > 0 is b(z) < K.

(c) There exists K > 0, such that for each z < K is b(z) = 1.

It can be easily seen, that in the case (a)




It follows, that this N-convergence and the convergence with respedt to the standard metric
of real numbers are identical. The property (a) is obviously fulfilled, for example, if b is
continuous and strictly decreasing.

In the case (b) the only N-convergent sequences are sequences stationary from a term
(see [3]), thus, these nearness-generating functions give a trivial type of N-convergence.

Finally, a nearness in the case (c) does not distinguish points digtant less than K and as
a consequence, N-convergence is a little unusual and is affected alsp by the right continuity
or discontinuity of b at the maximal point K with the above mentioned property.

As we can simply prove, any fundamental sequence of real numbers is under the condi-
tion (c¢) N-convergent and has infinitely many N-limits.

Of course, not only the fundamental sequences are N-convergent:

Example 1. Let

1, forz <1,
b = - d N s pomed b —_— f , R.
(=) { 0, forz>1. an (z,y) = b(|lx — y|) for z,y €

Consider now the sequence {z,} = {0,2,0,2,...}. Despite the sequence is neither funda-
mental nor N-fundamental in a natural sence (because N(zy,,Zn41) = 0, for each n € N),
it is N-convergent and it has just one limit, the number 1.

The problem of N-continuity, studied in [3], is closely connected with the foregoing
discussed N-convergence.

It is shown there, that if the nearness-generating function b of a nearness N has the
property (a), then a real function of a real variable is N-continuous at a point if and only
if it is continuous at that point.

In the case (b) any function is N-continuous at any point.

What about the N-continuity in the case (c), in the paper [3] there are examples showing,
that functions continuous at a point need not be N-continuous at the point and vice versa.

3. N-COMPACTNESS IN R

A possible way, how to validate, that a generalization or fuzzification of classical mathe-
matical notions is a reasonable one, is to show, that at least some;of important properties,
assertions and relations from the classical case are preserved.

We are familiar with the well known fact in real analysis, that continuity on a compact
set implies uniform continuity.

Therefore a question arises, whether there is an analogy for N-continuity, uniform N-
continuity and N-compactness.



Definition 1. Let N be a nearness. A set A C R is called an N-compact, if any sequence
{xn}, 2, € A for each n € N contains a subsequence {zy, } such that z,, = o € A.

Evidently, the family of N-compacts is determined by the nearness and thus by the
nearness-generating function and it is different in the cases (a), (b), (c), distinguished
above.

Theorem 1. Let N be a nearness with the nearness-generating function fulfilling (a). A
set A C R is an N-compact if and only if it is a compact.

Proof. The assertion follows immediately from the fact, that theineamess establishes the
same convergence, as usual metric of real numbers.

Corollary. Let N be a nearness with the nearness-generating function satisfying (a). Let
A C R be an N-compact. Then any real valued function which is N-continuous on A is
uniformly N-continuous on A.

Theorem 2. Let N be a nearness with the nearness-generating function fulfilling (b). A
set A C R is an N-compact, if and only if it is a finite set.

Proof. The ”if” part is trivial.
Suppose that A C R contains infinitely many elements. Then A obviously contains
sequences not containing any stationary subsequence, hence A is not N-compact.

In [3], there is proved (Theorem 3), that in the case (b) all real functions of a real
variable are uniformly N-continuous on each set A CR.

Theorem 3. Let N be a nearness with the nearness-generating function satisfying (c). A
set A C R is an N-compact, if and only if it is a bounded set.

Proof. Let A C R be bounded and let {z,} be a sequence of its elements. Then there
exists a subsequence {z,, } which is fundamental. Hence there exists a positive number
ng such that ng,,ny, > ng implies |T,, — Zp,,| < K. Therefore, any element z,, for
Nk, > Mo is an N-limit of the chosen subsequence and thus A is an N-compact.

The proof of the opposite implication is indirect: Let A C R be a set, unbounded from
above.(The proof for unboundedness from below is analogical.)Let £; € A be arbitrary.
Let Ko > 0 be maximal number such that b(z) = 1, for z € [0, Ko). Now choose z2 € A
so that zo > z; + Ko, then z3 € A, z3 > T2 + Kg, and so on, for each natural n there
exists Tp41 € A, Tyuy1 > Ty + Ko, Tn € A.

It can be easily seen, that in this way chosen sequence {z,} cannot contain any N-
convergent subsequence.

The problem, if in this case any function, N-continuous on an N-compact set is also
uniformly N-continuous on this set is not yet solved, but a negative answer to this question
seems to be more probable.



4. NEARNESS ON A SET

Any ”reasonable” nearness on the set of all real numbers should be evidently compatible
with the structure of real axis. But if X is an arbitrary set without any structure, we are
not restricted by any additional requirements and conditions and a nearness in X should
comply only with our intuitive idea of a nearness.

We will consider the properties of the nearness N defined as follows.

Definition 2. Let X be a set. A binary fuzzy relation N on X is:called a nearness on X,
if:

(N1) N(z,z)=1, foreachz € X

(N2) N(z,y)=N(y,z), for each z,y € X

(N3) For each € > 0 there exists § < 1 such that

N(z,y) > 6 = |N(z,z) — N(y,2)| <¢, for each z,y,z € X.

The properties (N1) and (N2) , it means the reflexivity and the symmetricity of N are
immediate. The property (N3) substitutes, in a sence, the triangular inequality and it has
the following meaning: If two points z and y are sufficiently near one another, then the
difference of their nearnesses to any other point z is arbitrarily small.

In the real case, if X = R, it is trivial, that all nearnesses fulfill the properties (N1) and
(N2).It is easily seen, that the nearness of the type (b) fullfils also the property (N3): For
each € > 0, it is sufficient to take § > K.

As the following example shows, no nearness of the type (c) satisfies (N3).

Example 2. Let K > 0 be such that for z < K is b(z) = 1 and for z > K is b(z) < 1,

and let N(=2K 2K) = p(4E) =gy < 1. Put g =1-ko < 1.

Then despite of the fact, that N(2K,0) =b(2E) =1> 4, foreach § < 1,
—2K 2K -2

K 4K 2K
) - NS0l =) - = -k =a.

IV -

Proposition 1. Let N(z,y) = b(|z — y|) for each z,y € R be a nearness on R of the type
(a) and let moreover the function b be continuous. Then for all'z,y,z € R and for each
€ > 0 there exists § < 1, such that

b(lz —yl) > 6 = bz — 2]) - b(ly - 2))| <e,

it means, that N satisfies the property (N3).

Proof. By assumptions it follows obviously, that the function b is uniformly continuous.
Let ¢g > 0 be arbitrary.



Uniform continuity of b implies, that there is dp > 0 such that for each z,,z2 € R,

|$1 - (L‘2| < g = |b($1) - b(:L‘z)l < €p.

Put 6, = b(tso) <1.

Now, if for a couple of real num
from the triangular inequality it fo

llows that for any real z
Iz — %] — |y — 2| < |z — y| < bo.

Therefore |b(|z — z|) — b(|ly — 2|)| < €o.

As the following example shows, the assumption of continuity

rem cannot be dropped.
Example 3. Let a nearness-generating function be defined by

1—-
0,

for z < 5,
for z > 5.

x
10°

b(z) = {

It is easily checked, that for any § < 1 there is a number ng such t

ng,

5n—1
5n

1 -1 1
N(;, 7) = b(%) = > ¢ and simultaneously |N (5, ;)—N

If X is a nonempty set, N a nearness on X, zo € X and e <1

Oc(zp) = {z € X : N(z,z0) > €}.

Now denote by B the system of all O.(z), for all z € X and e < 1.

Theorem 4. The system B creates a basis of a topology on X.

Proof. 1t is sufficient to show, that if B; and B are two sets fr
Zg € B, N By, then there exists By € B such that zg € By C By I
Let B, = 031(171), By = 052(.'1:2) and o € B; N B;. We wil
d0 < 1 such that By = 050(1:0) C B; N Bs:
Let ¢g € (0, min(N(z1, o) — €1, N(z2, o) — €2)) be arbitrary, 1

bers z, y it holds b(|z — y|) > &

1, then |z — y| < dp and

from the foregoing theo-

hat foreachn € N, n >

let us denote:

om the system B and if
) Bs.
1 show that there exists

but fixed.

From the property (N3) it follows, that there exists a number ¢g < 1 such that for each

zeXandi=1,2

N(z,zo) > 0o = |N(z,z:) — N(zo, xi)| <
Thus if £ € Op,(xo) then N(z,z;) > N(zo,z:i) — €0 > ¢; for
O¢, (%1) N O, (z2).

From now on let 7 denote the topology created on the set X
(X, T) denote the corresponding topological space.

™

0-

i = 1,2, so that x €

[ by the basis B and let




Example 4. Let X =R and let N be a trivial nearness on X:

1, forz =y,

N =

(z,4) { 0, forz#y.
As is easy to check, N satisfies the properties (N1), (N2) and (N3). The basis B, derived
from the nearness N consists of all one-point sets, therefore the created topology 7 is
discrete.

It can be simply verified, that %my nearness in R of the type (b) establishes a basis B,
containing all one-point sets, thus in this case the topology 7 is always discrete.

Similarly , it can be easily proved, that despite for nearnesses|in R of the type (a) we
can obtain different bases, depending on the concrete nearness-generating functions, the
topology 7T created by those bases is always the same - the standard topology of real axis.

It is possible to define and to investigate N-convergence, Nicontinuity and relevant
notions in a universe X analogicaly as in the real case. The study in this direction will
appear in the forthcoming article.
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