FUZZY LENGTH OF CURVES

MARTIN KALINA^a, VLADIMÍR JANIŠ^b

^aDept. of Mathematics, Slovak Tech. University, Radlinského 11, Sk-813 68 Bratislava, Slovakia e-mail: kalina@vox.svf.stuba.sk

^bDept. of Mathematics, Faculty of Sciences, Matej Bel University, Tajovského 40, Sk-974 01 Banská Bystrica, Slovakia e-mail: janis@fpv.umb.sk

ABSTRACT. The aim of this paper is to introduce the "fuzzy length" of curves. The concept is based on the notion of "fuzzy nearness relation", which is put into a metric space.

The formula which allows us to find the length of a given curve (in the Euclidean metric space) is well known. However, to use it we need precise information about the curve. And this is not always the case. Our long-term intension is to "measure" (in a vague sense) the length of a curve if this is given in a "fuzzy" sense. The first step will be the introducing a fuzzy length.

Our considerations will take place in a metric space (X, ρ) . We assume that for each real r > 0 there are $x_1, x_2 \in X$ such that $\rho(x_1, x_2) = r$. The crutial notion will be that of fuzzy nearness, introduced in [K] and further developed in [J] and in [D1,D2].

 $\mathcal{M}: \mathbb{X} \times \mathbb{X} \to [0;1]$ is said to be the relation of fuzzy nearness metrizable by ρ iff there exists a continuous nonincreasing function $f:[0;\infty] \to [0,1]$ such that f(0) = 1 and $f(\infty) = 0$ and there holds

$$x\mathcal{M}y = f(\rho(x,y)).$$

Let us give some examples of such fuzzy nearness relations \mathcal{M} . Examples.

(E1)
$$x\mathcal{M}y = \exp(-\rho(x,y))$$

(E2)
$$x\mathcal{M}y = \begin{cases} 1 - \rho(x, y) & \text{iff } \rho(x, y) \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(E3)
$$x\mathcal{M}y = \begin{cases} 1 & \text{iff } \rho(x,y) \leq 0.5\\ 2 - 2\rho(x,y) & \text{iff } 0.5 < \rho(x,y) \leq 1\\ 0 & \text{otherwise} \end{cases}$$

(E4)
$$x\mathcal{M}y = \begin{cases} 1 & \text{iff } \rho(x,y) \le 0.5\\ 2 - 2\rho(x,y) & \text{iff } 0.5 < \rho(x,y) \le 0.75\\ 0.5 & \text{iff } 0.75 < \rho(x,y) \le 1\\ 1 - 0.5\rho(x,y) & \text{iff } 1 < \rho(x,y) \le 2\\ 0 & \text{otherwise} \end{cases}$$

As the main goal will be estimating a fuzzy length in an Euclidean space, we can assume, that there are no points in X isolated with respect to the nearness, that means for any pair of points $x, y \in X$ and any $\alpha \in]0; 1[$ there is a finite sequence of points $x = x_0, x_1, \ldots, x_n = y \in X$ such that $x_k \mathcal{M} x_{k+1} \geq \alpha$.

Fuzzy distance of points. How to count distances (or, better, "distances") in the announced fuzzy sence? Let us fix a metric, ρ , and a fuzzy mearness relation, \mathcal{M} , metrizable by ρ . Up to the end of this article ρ and \mathcal{M} will always mean the just mentioned couple. To each $\alpha \in]0;1]$ we can relate a unique number

$$\rho_{\alpha} = \sup\{r \in \mathbb{R}; (\exists x, y \in \mathbb{X})(\rho(x, y) = r \& x \mathcal{M} y \ge \alpha)\}.$$

We define the α distance $(\alpha \in]0;1[)$ of two points $x,y \in \mathbb{X}$ by the following

$$\tilde{\rho}_{\alpha}(x,y) = [n \cdot \rho_{\alpha}; (n+1) \cdot \rho_{\alpha}],$$

where

$$n = \begin{cases} 0 & \text{iff } x\mathcal{M}y \geq \alpha \\ \min\{k \geq 1; (x_0 = x \& x_0 \mathcal{M} x_1 \geq \alpha & \dots & x_{k-1} \mathcal{M} x_k \geq \alpha \& x_k \mathcal{M} y \geq \alpha \} \\ & \text{otherwise.} \end{cases}$$

The fuzzy distance of the points x, y is given by

$$\tilde{\rho}(x,y) = \lim_{\alpha \to 1_+} \tilde{\rho}_{\alpha}(x,y).$$

This limit has to be taken with respect to the Hausdorff metric in the real line. As the sets $\tilde{\rho}_{\alpha}(x,y)$ are closed bounded intervals, their limit is again an interval (possibly collapsed to a singleton), whose left and right endpoints are the limits of the right and left endpoints in these intervals.

Lemma 1. If $\rho_1 = 0$, then $\tilde{\rho}(x, y) = \rho(x, y)$. Otherwise $\tilde{\rho}(x, y)$ is an interval of the length ρ_1 containing $\rho(x, y)$.

Comment. Due to Lemma 1 in case of fuzzy nearness relations (E1,E2) the fuzzy distance of points x, y is a precise number, which is identical with their distance $\rho(x,y)$. In case of fuzzy nearness relations (E3,E4) the fuzzy distance of x, y is an interval of the length ρ_1 , i.e. in both cases of the length 0.5.

Fuzzy length of curves. In this section, for the simplicity, we will assume to work in an n-dimensional vector space \mathbb{X}^n , endowed with the metric, ρ , with its domain $\mathbb{X}^n \times \mathbb{X}^n$, and the fuzzy nearness relation, $\mathcal{M}: \mathbb{X} \times \mathbb{X} \to [0,1]$, similarly as it was in the above paragraph. Further, we will have our curve in question, \mathfrak{C} , given by a vector function $\mathfrak{C} = \{\varphi_i\}_{i=1}^n$, where $\varphi_i: \mathbb{X} \to \mathbb{X}$ are continuous functions. $\mathfrak{C}(t_1, t_2)$ will denote that $t_1 \in \mathbb{X}$ and $t_2 \in \mathbb{X}$ are the starting and ending points, respectively, of the parametrization of the curve \mathfrak{C} . $\mathfrak{C}(t)$ will denote the point $\mathfrak{C}(t) = \{\varphi_i(t)\}_{i=1}^n$.

The α -length of the curve $\mathfrak{C}(t_1, t_2)$ is defined by

$$ilde{
ho}_{\mathfrak{C}(t_1,t_2),lpha} = \left\{ egin{array}{ll} [0,
ho_lpha] & ext{iff for all } t \in [t_1;t_2] \ \mathfrak{C}(t) ext{MC}(t_1) \geq lpha \ [k \cdot
ho_lpha; (k+1) \cdot
ho_lpha] & ext{otherwise,} \end{array}
ight.$$

where

$$k = \min\{j \ge 1; (s_0 = t_1, s_{j+1} = t_2) \& (\forall i = 1, \dots, j) (\rho(\mathfrak{C}(s_{i-1}), \mathfrak{C}(s_i)) \le \rho_{\alpha}) \& (\forall i = 0, 1, \dots, j) (\forall t \in [s_i; s_{i+1}]) (\rho(\mathfrak{C}(t), \mathfrak{C}(s_i)) \le \rho_{\alpha}) \}.$$

Theorem 1. The α -length of a curve $\mathfrak{C}(t_1, t_2)$ is independent of its parametrization.

The curve $\mathfrak{C}(t_1, t_2)$ will be called **fuzzy rectificable**, iff for all $\alpha \in]0, 1[$ its α -length is finite.

We say that the curve $\mathfrak{C}(t_1,t_2)$ is of finite fuzzy length, given by

$$\tilde{\rho}_{\mathfrak{C}(t_1,t_2)} = \lim_{\alpha \to 1_+} \tilde{\rho}_{\mathfrak{C}(t_1,t_2),\alpha}$$

if the resulting interval has a finite upper bound.

Example. Let us consider the Euclidean metric space E^2 and let us have the following curve

$$\varphi_1(t)=t, \ \varphi_2(t)=rac{\sin t}{t}, \quad t\in [-1;1].$$

Then regardless of fuzzy nerness relation this curve is fuzzy rectificable and in case the fuzzy nearness relation has $\rho_1 \neq 0$ (relations (E3,E4)), it is of finite fuzzy length.

Theorem 2. If for the fuzzy nearness relation M $\rho_1 = 0$ holds, then there are fuzzy rectificable curves with no fuzzy length in our metric space.

REFERENCES

- [D1] Dobrakovová J., On a fuzzy nearness, In: Strojné inžinierstvo'98, Bratislava 1998, 33 37.
- [D2] Dobrakovová j., On a type of fuzzy continuity, BUSEFAL 76 (1998), \$1 85.
- [J] Janiš V., Fuzzy uniformly continuous functions, Tatra Mountains Math. Publ. 14 (1998), 177 180.
- [K] Kalina M., Derivatives of fuzzy functions and fuzzy derivatives, Tatra Mountains Math. Publ. 12 (1997), 27 34.