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The linear regression belongs to significant characteristics of the development of homogeneous
series of data. If the data are vague then it is important to find adequate approach to their
regression which could reflect both types, stochastic and fuzzy, of uncertainty which are included
in them. In the following sections we briefly discuss three of such possible methods. The
first one simply repeats the classical statistical methods for processing fuzzy quantities. The
second method simply (and rather voluntarily) processes the empirical fuzzy data, and the third
one suggests the application of statistical formulas to important values of trapezoidal fuzzy
quantities.

1 Uncertainty in Regression — Heuristic Introduction

The formal quantification of dependence between two (or more) serjes of data belongs to sig-
nificant problems of applied mathematics. The classical statistical regression model is well
elaborated and its transmission to the fuzzy environment could seem to be natural. As follows,
e.g., from the contributions selected in edited volume [2] the practical realization of this task
need be neither simple nor easily interpretable.

The aim of this paper is to contribute, at least briefly, to the problem of practical calculation
of some analogies of the statistical regression model. The stochastic counterpart of our con-
siderations will be the basic model of linear regression between two random quantities. Let us
remember that for two sequences of numerical values (&1, 2, ...,&:), (m,72,-..,7) representing
n realizations of random quantities = and H the linear regression relation is

(1) H=a+b=
where -
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In the following sections we assume that some of the values existing in the above formulas are
fuzzy. Namely, we assume only the vagueness of the values 7,...,7, meanwhile the numbers
€1,--.,& are exactly known realizations of the random variable = (for example, they denote

time values in the model of time-series).

Here, we would briefly discuss the sources and types of uncertainty existing in = and, es-
pecially, in H. It is not realistic to assume that the single one is the vagueness, it means that
the values 7y, 72, ..., n, are essentially determined but not exactly known or specified by vague
verbal expressions. In such case the linear relation (1) would be fulfilled in certain sense deter-
ministically, where the fuzzy values fulfil (1) regularly (e.g. their modal values are located on
a straight line). It is more realistic to assume that the uncertainty connected with the values
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T, 72, - - - T combines randomness and vagueness. They represent a sequence of vaguely known
realizations of random variable and in this sense they display both, probabilistic and fuzzy, fea-
tures. It means that it has a sense to combine statistical and fuzzy det theoretical approaches

to their processing.

In the following sections we formulate and discuss three of such cg

2 Conservative Compqtation

The first of the combined approaches to stochastical-fuzzy regression
reproduction of the usual statistical proced_ures (2) _?,pplied to fuzzy
us stress that values &,...,&,, as well as £, (& — £), (& — &), are

procedures generating their values. On the other hand m,...,7, 4

randomly distributed possible values) which means that 7, (9 — 7
quantities. Then we can proceed using one of the following methods.

2.1 Extension Principle

The first selfevident possibility is to use the classical extension principls

of arithmetic operations with fuzzy quantities. In our case we need
— the sum of fuzzy quantities and the product of fuzzy quantity and
properties can be found, e.g., in [1] or [4]. If r € R is a real number, s,

membership functions us, y, then also the sum s @t and the produc|

with membership functions

3) psgt(z) = sup (min(ps(y), pe(z ~ y)))
(4) prs(z) = ps(z/r), ifr#0, z€R.

It is relatively easy, using (3) and (4), to compute 7 as defined by (2)
difference (7; — 7) can be computed using (3) in 7; @ (—7) where for

()
and also the product (& — &) - (m; —7), i=1,...,n, the sum
G- m-1M0&E-8 (-N® ¢ —§

and the product of its fuzzy result with crisp

/J’—s(z) = us(—-m), reER

__
Z?:l (61 - Z)Z

can be computed. In this way we derive fuzzy quantities a, b from (1
formula is complete. The associativity and distributivity of the aboy
r-s@r-t, means that there are no theoretical problems connected v

Having completed the regression formula (1) with fuzzy coeffic
determine for any realization £ of £ the membership function of “tyi
corresponds with the given value £.

There exists one methodological problem connected with the ap
principle. Its multiple application, namely of the summation formulal
the extent of the support of the membership function of the result
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growth of the range of possible values of, e.g., the fuzzy coefficients @, b. If these fuzzy coeffi-
cients are “too fuzzy” then the informative value of formula (1) with such coefficients is rather
low. The fuzzy quantity n = a + b for typical realization £ of E covers such a wide interval of
possible “typical” values that it offers only very little information about the properties of the
modelled process.

In such case it is desirable to find another method for processing fuzzy quantities which could
lead to more “concentrated” values§ of the result.

2.2 Generated Fuzzy Quantities

A model of fuzzy quantities and their processing which need not lead to enormous increase
of formal uncertainty was suggested in the literature. It is treated, e.g., in [5] and [6] and
it is based on the concept of generation of fuzzy quantities. Due tg this concept every fuzzy
quantity, let us say 7; in our case, consists of a crisp numerical ‘{Iue 07 combined with a

“normalized” representative of fuzziness called shape function which represents the form of
uncertainty included in its (usually verbal) characterization, and which we denote ¢ : R — [0, 1],

(0) =1, ¢(z) increases for z < 0, ©(z) decreages for z > 0.

The crisp value n* localizes the fuzzy quantity 7; (more exactly — its| membership function) on
the real line and its actual membership function depends on the standard “normalized” shape

¢ and on this localization. This dependence is arranged by means of a real-valued function f
called scale,

f(0) =0, f(z) is strictly increasing.
Exactly, the membership function y; of 7; is defined by
(6) pi(z) = ¢ (f(z) - f(n])), z€R.

If, for example,
¢(z) = max(0, 1 - |z|)

and
flx) = = for z <5,
z 5
= —+4 = >
5 + 5 z 25,
then for n¥ =2
,u1(-2)(a:) =0 if z<1
= z-1 if z€(1,2)
= 3-z if z€[2,3)
= 0 if >
meanwhile for n} =8
;L,(-S)(x) =0 if 2<6
= %—3ifz€@£)
= 5—§ifz€BJm
=0 if x> 10.

More details about this topic can be found in [5, 6] and some other papers.




The main effect of the concept of generated fuzzy quantity is the

calculation with quantitative numerical values of the quantities from

possibility to separate the
the logical or semantical

I

processing of their “normalized” uncertainties. In our case, we can apply formulas (2) for usual

algebraical processing of crisp values & and (also crisp) values 7, 7 3

compute the crisp values ¢* and b* of the fuzzy quantities @ and b.

the “normalized” shapes ¢, and ¢, from the shapes ¢y, ..., ¢, of n.

logical principles, e. g.

@a(z) = max(p1(z). .., n(z)) or @p(z)=01(z)-

(Let us note that there exist numerous formulas for deriving ¢, and

extension principle (3) and formula (4) belong to them and it is w
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scale f and, using (6), the membership functions p, and up of @ apd b, respectively, can be

derived.

The procedure described above‘ has some methodological advant
aration of the quantitative and qualitative component of the fuzzy q
and it has also pleasant practical consequences. The supports of y,,

narrower than in the case when the classical extension principle is u

means that the idea about the “outputs” of the regression with resp
data &y, ..., &, and fuzzy datan,..., 7., (where “outputs” means the
reliable and more concentrated than if the extension principle is used
in this section respect the theoretical paradigms of the fuzzy set theg

3 Empirical Estimation

The values of fuzzy coefficients @ and b in (1) can be estimated als
without deep theoretical background. One of such approaches is br
reliability depends on the existence of a qualified expert whose vi
statistical (and fuzzy) empirical data.

For every fuzzy quantity 7;, i = 1,...,n, we denote by 5 its m
number for which p;(n}) = 1 where y; is the membership function of
one modal values then 7;" represents the “mean” one of them, i.e.,

+_ max(z € R:pi(z) =1) — min(z € R : p;(z)
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Modal values 7} are crisp numbers, and we can use formulas (2) witl
..., nF to compute crisp values at, b* of the coefficients a, b in (1),

Then an expert would be able to extend the crisp values at, b™|
example in such way that he constructs real numbers ay, as, by, b, fi
and forms the membership functions 4, pp such that

h inputs 617 . 'af’m n;-a

into fuzzy quantities, for

or which a; < a3, by < by

pe(z) = 0 if z<a, p(z) = 0 if z<by,
. T-a + T -=b +
= —a+—a1 a1 <z<at, = o, by <z <b™,
_ a—=T + b -2 +
= oot at <z < ag, = bt bt <z < by,
=0 z > ag, =0 z > bs.




The expert can state the numbers 4y, ag, by, by, for example, so that

1,...,n are between the lines

ay+ b, &, az+b2&

for§ =¢;, i =1,...,n, or so that the area between these lines cove
possible values of 7;, : = 1,...,n.

The approach described in this section is simple and lucid but it is,

dependent on the subjective qua,liti#s (and prejudices) of the expert.
limited if the following method can'be used.

4 Fuzziness in Probabilistic Model

In this section we suppose that all fuzzy quantities 7, 72, . .
there exist quadruples of real numbers
),

(7) (n
(3)

(if 7 = n{
of 7; is defined by

(1)

1

(2)

1 771 ? 771(3) (4)

8 M <

pi(z) = 0 if x<17(1)
L1 SN )
NORD
= 1 if n®<z<n®,
_ onl-z o (@),
T T
= 0 if :1;2171(4).

The procedure of construction of fuzzy quantities @ and b using the

certain sense rather simlla,r to the one used in the previous section bu
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Having four sequences 171 y
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numbers, we can use them in comblnatlon w1th the crisp sequence (&, .

by means of (2) quadruples of coefficients
(a(l), a? ¢, a(4)) ,

Please, note that these quadruples need not fulfil the inequalities in

need not be definitoric quadruples of somehow trapesoidal fuzzy q

Nevertheless, it is not difficult to verify that for any £ € R, fulfilling
(8)

the inequalities

min(§; : ¢ on)<&<max(:i=1,...

a® 4 pM) E< a? 452 €< a® 450 £<a¥
hold. In this sense the segments of straight lines

a® £ p®) ¢ k=134

.y Tp, are t

771(2) < 771(3) <7

b1 p(2) p(3) p4)) |
(69,63,69,69)
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)

then 7); is called triangular fuzzy quantity) such that the membership function p;
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for £ fulfilling (8) determine a trapezoidal area where for any ¢ respecting (8), the quadruple
( M4 Mg a® 1@ . g a® 1@ g o 4 5@ . g ) — (,17(1) 73, n®, ,7(4))

defines a trapezoidal fuzzy quantity n which represents the probable and possible values of the
random and vaguely known variable H.

5 Conclusive Remarks

In the previous sections we have discussed three principal approacLes to the regression-like
relations between the sequences of quantities where one of them consists of crisp values, the
second one contains vague (fuzzy) quantities, elements of both sequences can be randomly
generated.

It is useful to note that the computational methods treated in Section 2 can be used even
if both sequences (£1,...,&), (M, -- ., 7.) are sequences of randomly generated fuzzy quantities
or, in an alternative formulation, sequences of vaguely known realizations of random variables
(see [4]). The remaining two methods, summarized in Sections 3 and 4, are conditioned by the

assumption that the values £1,...,£, are crisp, and their extension to the more general case
would be difficult.

The above approaches differ also in the proportion between formal mathematical exactness
and the relatively free subjective evaluation of the modelled situation. The methods shown in
Section 2 display relatively high degree of respect to the mathematical formalism. Especially
the approach in Subsection 2.1, based on the application of the extension principle, almost
exclusively uses formal exact procedures. The application of generated fuzzy quantities already
includes certain degree of subjectivism — at least in the selection of the shape functions and
logically-semantically motivated procedure of their combination during the construction of ¢,
and ¢;. The approach presented in Section 4 is also in its nature relatively objective and exact,
using the classical regression formula even if in less standard way. Finally, methods mentioned

in Section 3 are essentially connected with subjectivity and (qualified) opinion of the expert
evaluating the situation.

Nevertheless, the present methods in their completeness allow to find a relatively balanced
view of the regression in the environment of random-fuzzy phenomena.
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