Wd-Fuzzy Implication Algebras

Jiang Zhao Lin

(Department of Mathematics, Lin yi Teachers College, shandong, 276005, P.R. China)

Deng Fang an

(Department of Mathematics, Han Zhong Teachers College, shaanxi, 723000, P. R. China)

Abstract: This paper is about a kind of abstract algebra which is different from FI algebra and HFI algebra. Wd — FI algebra is abbreviation for it, we show the internal relations between it and regular FI algebra and HFI algebra, and discussed some properties of it.

Keywords: Wd-Fuzzy implication; Regular FI algebra; HFI algebras

1. Introduction

 $Wu^{[1]}$ defined Fuzzy implication algebras and obtained some elementary properties. In this paper we define Wd-Fuzzy implication algebra and prove it's properties.

2. Wd-FI algebra

We start this section define Wd-FI algebra, then give some properties of Wd-FI algebra.

Definition 2. $1^{[1]}$ An algebraic system $(X, \rightarrow, 0)$ of type (2, 0) is called a FI—algebra if it satisfies the following conditions:

$$(I_1)$$
 $x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$

$$(I_2)$$
 $(x \rightarrow y) \rightarrow [(y \rightarrow z) \rightarrow (x \rightarrow z))] = 1$

$$(I_3) \quad x \rightarrow x = 1$$

$$(I_4)$$
 $x \rightarrow y = y \rightarrow x = 1$ implies $x = y$

$$(I_5) \quad 0 \longrightarrow_{\mathbf{X}} = 1$$

where
$$1 = 0 \rightarrow 0$$

for all $x,y,z \in X$.

Definition 2. $2^{[1]}$ An algebraic system $(X, \rightarrow, 0)$ of type (2, 0) is called HFI algebras if it satisfies the following conditions:

$$(H_1)$$
 $x \rightarrow (y \rightarrow x) = 1$

$$(H_2) \quad [x \rightarrow (y \rightarrow z)] \rightarrow [(x \rightarrow y) \rightarrow (x \rightarrow z)] = 1$$

(H₃) if
$$1 \rightarrow x = 1$$
, then $x = 1$

(H₄) if
$$x \rightarrow y = y \rightarrow x = 1$$
, then $x = y$

$$(H_5)$$
 $0 \rightarrow x = 1$ where $1 = 0 \rightarrow 0$

Definition 2. 3 An algebraic system $(X, \rightarrow, 0)$ of type (2,0) is called Wd—FI algebras if it satisofies the following conditions:

$$(1) \quad x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$$

$$(2) \quad (x \rightarrow y) \rightarrow_Z = (z \rightarrow y) \rightarrow_X$$

$$(3) \quad x \rightarrow x = 1$$

(4)
$$x \rightarrow y = y \rightarrow x = 1$$
 implies $x = y$

(5)
$$0 \rightarrow x = 1$$
 where $1 = 0 \rightarrow 0$ for all $x, y, z \in X$.

Example 1. Let $X = \{0\}$ define $0 \rightarrow 0 = 0$ (whene 1 = 0) then $(X, \rightarrow, 0)$ is a Wd-FI algebras.

Example 2. Let X = [0,1], define $x \rightarrow y = 1$, for all $x,y \in X$, then $(X, \rightarrow, 0)$ is a Wd-FI algebras.

Example 3. Let $X = \{0, a, 1\}, \rightarrow X \rightarrow X$ be defined by

→	.0_	a	1
0	$\overline{1}$	1	1
a	0	1	1
1	0	a	$\overline{1}$
0 a 1	~	1	$\begin{array}{c} 1\\1\\1\\1\end{array}$

then $(X, \rightarrow, 0)$ is a FI algebra but not Wd-FI algebra. Because of $(1 \rightarrow a) \rightarrow 0 = a \rightarrow 0 = 0$; $(0 \rightarrow a) \rightarrow 1 = 1 \rightarrow 1 = 1$, so (2) is false.

In order prove that every Wd-FI algebra are FI algebra, We first

proved some Lemmas in first section. $(X, \rightarrow, 0)$ are Wd-FI algebra in the following Lemma.

Lemma 1. For any $x \in X$, we have $x \to 1 = 1, 1 \to x = x$.

Proof. By
$$x \to 1 = x \to (0 \to x) = 0 \to (x \to x) = 0 \to 1 = 1$$
 so, $x \to 1 = 1$.
 $(1 \to x) \to x = (x \to x) \to 1 = 1 \to 1 = 1$
 $x \to (1 \to x) = (x \to x) \to 1 = 1 \to 1 = 1$

by (4) we have $1 \rightarrow x = x$.

Lemma 2. For any $x,y,z \in X$, if $x \rightarrow y = 1$, $y \rightarrow z = 1$ then $x \rightarrow z = 1$

Proof. By Lemma 1
$$1 \rightarrow x = x$$
, we have $x \rightarrow z = 1 \rightarrow (x \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow z)$ $= [(x \rightarrow z) \rightarrow y] \rightarrow x = [(y \rightarrow z) \rightarrow x] \rightarrow x = x \rightarrow x = 1$,

hence $x \rightarrow z = 1$

Let $(X, \rightarrow, 0)$ be a Wd-FI algebra, we define the relation \leq : $x \leq$ y iff $x \rightarrow y=1$, $x,y \in X$, then (X, \leq) is a partial order sets.

Lemma 3. For any
$$x,y,z \in X$$
, if $x \le y$,
then $z \rightarrow x \le z \rightarrow y$, $y \rightarrow z \le x \rightarrow z$

Proof. By (1),(2),
$$(z \rightarrow x) \rightarrow (z \rightarrow y) = z \rightarrow [(z \rightarrow x) \rightarrow y]$$

 $=z \rightarrow [(y \rightarrow x) \rightarrow z] = (y \rightarrow x) \rightarrow (z \rightarrow z) = (y \rightarrow x) \rightarrow 1$
 $=(1 \rightarrow x) \rightarrow y = x \rightarrow y = 1$, hence $z \rightarrow x \leqslant z \rightarrow y$.

Since
$$(y \rightarrow z) \rightarrow (x \rightarrow z) = x \rightarrow [(y \rightarrow z) \rightarrow z]$$

$$=x \rightarrow [(z \rightarrow z) \rightarrow y] = x \rightarrow (1 \rightarrow y) = x \rightarrow y = 1$$
, hence $y \rightarrow z \leq x \rightarrow z$.

Lemma 4. For any $x, y, z \in X$, we have that

$$(x \rightarrow y) \rightarrow [(y \rightarrow z) \rightarrow (x \rightarrow z)] = 1$$

Proof. By(1), (2), we have
$$(x \rightarrow y) \rightarrow [(y \rightarrow z) \rightarrow (x \rightarrow z)]$$

$$= (y \rightarrow z) \rightarrow [((y \rightarrow z) \rightarrow x) \rightarrow x]$$

$$= (y \rightarrow z) \rightarrow [(x \rightarrow z) \rightarrow (y \rightarrow z)] = (y \rightarrow z) \rightarrow [1 \rightarrow (y \rightarrow z)]$$

$$= (y \rightarrow z) \rightarrow (y \rightarrow z)] = 1.$$

By above Lemmas and definition 2.3, we have:

Theorem 2. 1 Any Wd-FI algebra is a FI algebra.

3. Wd-FI algebra and regular FI algebra

Definition 3.1 [1] Let $(X, \rightarrow, 0)$ be a FI algebra, define a unary operation C: $C(x) = x \rightarrow 0$, for any $x \in X$, C(x) is called pseudo—complement of x.

Definition 3. 2 [1] Let $(X, \rightarrow, 0)$ be a FI algebra, $(X, \rightarrow, 0)$ is a rebular FI algebra iff for any $x \in X$, we have that CC(x) = x.

Theorem 3. 1 Any Wd - FI algebra is a regular FI algebra, in reverse is not holds

Proof. By theorem 2.1 and definition 3.2, we only proved that for any $x \in X$ implies CC(x) = x. In fact, $CC(x) = (x \rightarrow 0) \rightarrow 0 = (0 \rightarrow 0) \rightarrow x = 1 \rightarrow x = x$, the proof is completed.

Example. Let X = [0,1], define $x \rightarrow y = \min(1,1-x+y)$, then $(X,\rightarrow,0)$ is a regular FI algebra, but it is not Wd-FI algebra.

In fact, Let x=0.1, y=0.2, z=0.3, because

$$(0.1 \rightarrow 0.2) \rightarrow 0.3 = \min(1, 1-0.1+0.2) \rightarrow 0.3 = 1 \rightarrow 0.3 = 0.3$$

$$(0.3 \rightarrow 0.2) \rightarrow 0.1 = \min(1, 1-0.3+0.2) \rightarrow 0.1 = 0.9 \rightarrow 0.1$$

= $\min(1, 1-0.9+0.1) = 0.2$

hence $(0.1 \rightarrow 0.2) \rightarrow 0.3 = 0.3 \neq 0.2 = (0.3 \rightarrow 0.2) \rightarrow 0.1$

so
$$(x \rightarrow y) \rightarrow z = (z \rightarrow y) \rightarrow x$$
 is not hold.

It follows from theorem 3. 1 we have that:

Wd-FI algebra is proper subclass of regular FI algebra.

Theorem 3.2 Let $(X, \rightarrow, 0)$ be a Wd-FI algebra, We have that,

(i)
$$y \rightarrow z = (x \rightarrow y) \rightarrow (x \rightarrow z)$$

(ii)
$$[(y \rightarrow x) \rightarrow (z \rightarrow x)] \rightarrow (z \rightarrow y) = 1$$

(iii)
$$[x \rightarrow (x \rightarrow y)] \rightarrow y = x$$

(iv)
$$(x \rightarrow y) \rightarrow [(y \rightarrow x) \rightarrow y] = y$$

$$(v) \qquad (x \rightarrow y) \rightarrow y = x$$

(vi)
$$[x \rightarrow (y \rightarrow z)] \rightarrow [(x \rightarrow y) \rightarrow (x \rightarrow z)] = x$$

(vii) $[(x \rightarrow y) \rightarrow z] \rightarrow [(x \rightarrow z) \rightarrow y] = (y \rightarrow z) \rightarrow (z \rightarrow y)$
(viii) $x \rightarrow [y \rightarrow (y \rightarrow x)] = 1$
(IX) $(x \rightarrow z) \rightarrow (y \rightarrow z) = y \rightarrow x$
proof. (i) Because $(x \rightarrow y) \rightarrow (x \rightarrow z) = [(x \rightarrow z) \rightarrow y] \rightarrow x$
 $= [(y \rightarrow z) \rightarrow x] \rightarrow x = (x \rightarrow x) \rightarrow (y \rightarrow z) = 1 \rightarrow (y \rightarrow z)$
 $= [(y \rightarrow z) \rightarrow x] \rightarrow x = (x \rightarrow x) \rightarrow (y \rightarrow z) = 1 \rightarrow (y \rightarrow z)$
 $= [(y \rightarrow x) \rightarrow (z \rightarrow x)] \rightarrow (z \rightarrow y)$
 $= [(y \rightarrow x) \rightarrow (z \rightarrow x)] \rightarrow (y \rightarrow x)$
 $= [(y \rightarrow x) \rightarrow (y \rightarrow x)] \rightarrow (y \rightarrow x)$
 $= [(y \rightarrow x) \rightarrow (y \rightarrow x)] \rightarrow (y \rightarrow x) \rightarrow (y \rightarrow x)$

(IX)
$$(x \rightarrow z) \rightarrow (y \rightarrow z) = y \rightarrow [(x \rightarrow z) \rightarrow z]$$

$$= y \rightarrow [(x \rightarrow z) \rightarrow z] = y \rightarrow [(z \rightarrow z) \rightarrow x]$$

$$= y \rightarrow (1 \rightarrow x) = y \rightarrow x.$$

4. Wd—FI algebra and HFI algebra.

By theorem 3.2 and definition 2.2 we have that:

Theorem 4.1 Wd—FI algebra may not be HFI algebra.

Theorem 4. 2 Let $(X, \rightarrow, 0)$ be a Wd-FI algebra, if any $x,y,z \in X$, We have $x \rightarrow (y \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow z)$ holds, then Wd-FI certain be a HFI algebra.

Proof. Let $(X, \rightarrow, 0)$ be a Wd - FI algebra, it is satisfies the condition (H_4) , (H_5) of defintion 2.2, and $x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$, let z = x, we have $x \rightarrow (y \rightarrow x) = y \rightarrow 1 = 1$, hence (H_1) hold; according to it following the condition $x \rightarrow (y \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow z)$, we have $[z \rightarrow (y \rightarrow z)] \rightarrow [(x \rightarrow y) \rightarrow (x \rightarrow z)] = 1$. so (H_2) hold; because $1 \rightarrow x = x$ and $1 \rightarrow x = 1$, we have x = 1, so (H_3) hold. Hence $(X, \rightarrow, 0)$ be a HFI algebra.

The following theorem can be easily proved by reference [1]

Theonem 4. 3 Let $(X, \rightarrow, 0)$ be a HFI algebra, if $(x \rightarrow y) \rightarrow z = (z \rightarrow y) \rightarrow x$, for any $x, y, z \in X$, then $(X, \rightarrow, 0)$ sure be a Wd-FI algebra.

Reference

^[1] Wu Wang Ming, Fuzzy implication algebra, Fuzzy System and Mathematics (in China) (1) $1990: 58\sim63$.

^[2] Deng Fang an Some results of Fuzzy implication algebras, Hanzhong techhers college, (2) $1992:16\sim20$.