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Abstract: This paper is about a kind of abstract algebra which is
different from FI algebra and HFI algebra. Wd — FI algebar is
abbreviation for it, we show the internal relations between it and regular
FI algebra and HFT algebra,and discussed some properties of it.
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1. Introduction :

Wul defined Fuzzy implication algebras and obtained some
elementary properties. In this paper we define Wd — Fuzzy implication |
algebra and prove it s properties. ‘

2. Wd—FI algebra

We start this section define Wd — FI -algebra, then give some
properties of Wd —FI algebra. ‘ _

Definition 2. 111 An algebraic system (X, —, 0) of type (2,0) is
called a FI—algebra if it satisfies the following conditions:

A x> (y—>z) =y—>(x—>z)
L)  G=>y)>[(y—=>2)—Gx—>2))]=1
(Is) x—>x=1

I x>y=y—>x=1 impies x=y



Is) 0—>x=1 where 1=0—0
for all x,y,zEX. ’

Definition2. 2011 A algebraic system (X ,—, 0)of type (2,0) is called
HFT algebras if it satisfies the following conditions ;

(H)  x—>(y—>x)=] :

(H,) [x—>(y—>z)]—>[(x—*y)—>(x—>z)]=1

(Hy)  if 1->x=1,then x=1

(Hy) if X>y=y—>x=1,then x=y

(Hs) 0—>x=] where 1=0->(

Definition 2. 3 An algebraic system (X,—,0) of type (2,0) is called
Wd—FI algebras if it satisofies the following conditions ;

(D x> (y>z) =y (x7) ‘

(2) (x—>y)—>z=(z—>y)—>x

3) x—>x=1

(1) x—>y=y-sy=] implies x=y

(5)  0—>x=1 where 1=0—0 for all x,y,zEX. ,

Example 1. Let X={0} define 0—>0=0 (whene 1=0) then (X,
—>,0) is a Wd—FI algbras.

Example 2. Let X=[0,17, define x—>y=1,for all x,y €X,then
(X,—>,0) is a Wad—FT algebras.

Example 3. Let X= {0_,a,1} »—>: X—X be defined by
1 ’
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then (X,—,0) is a FI algebra but not Wd—FJ algebra. Because of (1—
a)‘>0=a—>0=0;(0->a)—>1=1—>1=1, so (2) is false.

In order prove that every Wd —FI algebra are FI algebra, We first



proved some Lemmas in fil8t section. (X,—>, 0)are Wd —FTI algebra in
the following Lemma.
Lemma 1. For any x€X, we have x—>1=1,1>x=x.
Proof. By x—>1=x—>(0—>x)=0—->(x>x)=0—->1=1so0, x—>1=1.
(1I>x)—>x=(x—>x)>1=1>1=1
x> (1=>x)=Kx—=>x)—>1=1>1=1
by(4) we have 1—>x=x.
Lemma 2. For any x,y,zEX, if x>y=1, y—>z=1 then x—>z=1
Proof. By Lemma 1 1--x=x, we have
x>z=1->(x—>z) = (x—=>y)—>(x—>z)
=L &>yl x=[(y>z)>x>x=x—>x=1,
hence x—>z=1 '
Let (X,—,0) be a Wd—FI algebra, we define the relation <; x<X
y iff x>y=1, x,y€X, then (X,<0) is a partial order sets.
Lemma 3. For any x,y,z€X, if xly,
then z—>x<z—>y, y>zx—>z
Proof. By (1),(2), (z—>x)—>(z—>y) =z—>[ (z>x)—>y]
=z—>[ (y>x)—>z]=(y>x)>(z—>2) = (y—=>x)—1
=(1->x)—>y=x—>y=1, hence z—>Xx<z—>y.
Since (y—=>z)—>(x—>z) =x—>[ (y—>z)—>z]
=X_>[(Z—)Z)_)YJ=X—)(1"—>Y) =x—>y=1, hence y—>z<x—z.
Lemma 4. For any x, y, zEX, we have that
=)= (y=>2)—>(x—>z)]=1
Proof.  By(1), (2), we have (x—>y)—>[(y—>2)—=(x—2)]

ks

= (y‘->Z)—>[((y—>z)—>x)—>x]
=(y—>z)—*[(x—>z)~>(y—>z):|=(Y*z)—’[l—*(y—’Z)]
=(y—=>z)—>(y—>2z) ]=1.

By above Lemmas and definition 2. 3, we have .
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Theorem 2. 1 Any Wd—FT algebra is a FI algebra.
3. Wd—FI algebra and regular FI algebra

Definition 3. 1 [*J Let (X, —, 0) be a FI algebra, define a unary
operation C: C(x) =x—>0, for any x€X , C(x) is called pseudo —
complement of x

Definition 3. 2 ™) Let (X,—,0) be a FI algebra, (X, —,0) is a
rebular FI algebra iff for any x ©X, we have that CC(x) =x.

Theorem 3. 1 Any Wd — FI algebra is a ;egular FI algebra, in
reverse is not holds | '

Proof. By theorem 2. 1 and definition 3. 2, we only proved that for
any x €X implies CC(x)=x. In fact, CC(x)=(x—>0)->0= (0—>0)—x
=1-—>x=x, the proof is completed.

Example. Let X=[0,1], define x—>y=min (1, 1—x+4y), then
(X,—,0) is a regular FI algebra, but it is not Wd —F] algebra.

In fact, Let x=0.1, y=0.2, z=0. 3, because

(0. 1>0. 2)—0. 3=min(1,1—0. 140. 2)—0. 3=1—0. 3=0. 3

(0. 3—0. 2)—0. 1 =min(1,1—0. 3+0. 2)—>0 1=0.9—0.1

=min(1,1—0. 9+40. 1) =0. 2

hence (0. 1—>0 2)—>0. 3=0. 3#40. 2= (0. 3—0. 2)—>0. 1

so (x—>y)—>z=(z—>y)—x is not hold.

It follows from theorem 3. 1 we have that .

Wd—FT algebra is proper subclass of regular FI algebra.

Theorem 3. 2 Let(X,—,0) be a Wd—FI algebra, We have that,

() y—>z=(x—>y)—>(x—>z)

(i) Ly—=x)=>GE>x)]>G>y)=1
(iii) [x—>(x—>y) J>y=x

@) G =x—=y]=y

(v) (x—>y)—>y=x



(vi)

(vii)

(viii)
(IxX)
proof. (i)

(i)

(iii)
(iv)
(v)

vi)

(vii)

(viii)
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[x—>(y—>2) ][ (x—>y)—>(x—>2) ]=x

[G=y)—>z]>[x=2)>y]= (y=>2)>(z—>y)

x~>[y—=>(y—=>x)]=1

x—>2)—>(y—>2z) =y—>x
Because (x—>y)—>(x—>z) =[ (x—>z)->y ]—>x
=[=2)—>xJ>x=(x—>x)>(y>2)=1—>(y—>2)
=y—z, hence y—>z=(x—>y)—>(x—>z)
[G—>x)=>(z>x)]>(z—>y)
=[E>y)>GE>x)]>(y—>x)
=(y—=>x)>(y—>x)=1 '
[x=>G—>y) J>y=[y—>(x—>y) ]>x
=[x—>(—>y) J>x=(x—>1)—>x= 1—>x=x
G=y)>[y=x)—>y]= (y—>x)—>[(xr->y)-*3’:|
=G>0>[=>y)—>x]=(Gy—>x)>x
=(X>x)>y=1—>y= =y
x=>y)—>y=(y—>y)>x=1->x=x.
[x—>(y—=2z) ][ x—=>y)—>(x—>2z)]
=[x—>(y—*z)]*>|:(x—>y)—->(x—>z):| -
=[x—>(y—>2) > (y—>2)
=[—=>2)>(y—>2) J>x=1->x=x
[(x*y)-’z]*[(x—*z)—*y]
=[>y)—=x]>[ (y=>2)—>x]
= (y—>z)->{[ (z~>y)—>x]—>x}
=—>2)>[(x—>x)>(z>y)]
= (y—*z)—*(l»(z*y))
=(y—>z) >(z—>y)
x=>[y—>(y—>x)]=y—>[x—> (y—=>x)]
=y>ly>X—>x)]=y> (g1 =y>1=1
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(IxX) =)= (y—>2) =y—>[ (x>2)—z]
=y—>|:(x—*z)—>z]=y—>[(z—>z)~>x]
=y—=>({1—>x)=y—>x.

4. Wd—FI algebra and HFI algebra.

By theorem 3. 2 and definition 2. 2 we have that ;

Theorem 4. 1 Wd—FI algebra may not be HFI algebra.

Theorem 4. 2 Let (X,~>,0) be a Wd—FT algebra ,if any x,y,z€

X, We have x—=>(y—>z) = (x=>y)—>(x—>z) holds, then Wd —FI certain
be a HFI algebra.

Proof. Let (X,—,0) be a Wd — FI algebra, it is satisfies the
condition (Hy), (Hs) of defintion 2. 2, and x> (y—>z) =y—>(x—>z), let
Z=X, we have x>(y—>x)=y—>1=1, hence (H,) hold; according to it
following the condition x—>(y—»z) = (x—>y)—>(xr—>z) » we have [z—(y
—2) > (x=>y)—>(x=>2)]=1. so (H3) hold; because 1—>x=x and 1—
x=1, we have x=1, so (H;) hold. Hence (X,—,0) be a HFI algebra.

The following theorem can be easily proved by reference [

Theonem 4. 3 Let (X,—,0) be a HF] algebra, if (x—>y)—>z=(z—>
y)—>x, for any x,y,zE X, then (X,—,0) sure be a Wd—FTI algebra.
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