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1. Introduction. In thise paper Chebyshev’s fuzzy law of
large  numbers in the framework of theory possibility is
formulate. Resently [2] was shown that for fuzzy numbers of
symmetric triangular form X1, Xe,... the law of large numbers is
obeys. In [3]1 Dombi’s operator used and the fuzzy law of large
numbers for more general environment is shown as well. Then
t-norm representation theorem of Ling is used as a basic tool
and the results are presented in terms of the additive generator
of a triangular norm [4]1. Here we developed that research.

Note, that membership function a symmetric triangular
fuzzy number Xi= (mj,d;), 1is defined as

uxi(x) = max(0, 1-|x-mil/di), di- is its width; m;- is its
modal value (dj>0, -« < mj< »). They are an L-R type fuzzy num-
bers by Dubois & Prade [11, when L(x) = R(x) = max(0, 1 - |x|):
L ({mi-x)/dij), for x € my

px . (x) =
1 R ((x-mj)/dj), for x > my

Now, the grade of the possibilty of the statement: " [a,bl
contains the value of X" is defined as (2]

-

Pos (a< X < b) = Sup wxx);
a<x<b
And necessity is defined as
Nes (a <« X< b) =1 - Pos(X<a, X>b).
Now [11, function T: [0;11 x [0;1] --> [0;1]1 1is t-norm, if
T is commutative, associative, non-decreasing and T(0,1) = O,
T(1,1) = 1. A t-norm will be called Archimedian if T is
continuous and T(u,u) < u; 0 < u < 1.
T-sum of two fuzzy numbers is denoted as ST = (Xq+X2)T and
its membership function is defined as

g (2) = suwp T(uxl(x), uxz(y))
ST Xty=2z '
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Obviously, that for a tasks of applicable character it is
interesting to study the behavior of the T-sum of fuzzy nambers
Sn = ((W1Xq+tweXot+...+WnXn) )T when n » « and witwo+t...+Wn=1,
wi20, i=1,2,...,n.

2. Results.

We consider one of the case L-R type fuzzy numbers by
Dubois & Prade when membership function of fuzzy number X; is
uxi(x) = L(|x-mj|/d). Here L is a decreasing function on [0;%),

and L(O) =1, L(x) = L(-x).
In this the case we’ll speak that the fuzzy number X;j

belongs to the class L, Xi € LL.

Theorem 1. If T is Archimedian t-norm, Xj e Lp, wit+...+Wwn=1
then for any £>0

Nes[Nn—a < ( W1 X1+tWoXot. . . +WnXn JTé Nn+s] =

-1
= f (min (f(0), n-f(L(e/d))), Np=w1imq+wome+. . . +Wnln,
f - is an additive generator of a triangular norm T,

£ - is its inverse.

Theorem 2. If T is Archimedian t-norm, Xj € L, wq+...+wp=1
then for any >0

Nes[Nn—s < ( W1 X1 tWoXo+. . . +WnXn )T< Nn+s} 2 1 - L(e/d)

Theorem 3. If T is Archimedian t-norm, Xj= (mj,d), then
for any £>0

K1+Xo+. . . +Xp
Nes[Mn—a < (

. )T< Mn+s]=1—f—1[min (F(0), n.f(l_s/d)))

Mp = (mq+me+...+mp)/n,
From theorem 3 we can get some useful corollaries.
Corollary 1. For the environment of theorem 3, when

f(0) =1 or f(0) = =, we have
Kq1+Xot. . . +Xp

Lim Nes [Mn—s < [

n —» ©«

) < Mn+s] =1
n T
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Corollary 2. Let T(u,v) = u-v, Xie Ly and
L(x) = max(0, 1 - x%), then for 0 < £ < d
mq+mo+. . . +Mn KqtXo+. . . +Xp mq+mo+. . . +Mn
[ - g < ( ] < +a]

d vi d vh )T d v

=1 - exp (- £2).

Nes

Particulary, if = =Vr3, we have

mp+mo+. . . +mp K1+Xot+. .. +Xn mqtme+. . .+mnp
Nes[ —Vr ’[ )T< +V§

3 < ~
d vn d vn d ¥n

3. Proof of theorems. We are begining from theorem 1. If
T is Archimedian t-norm, pt+g=1, p > 0, 57 = (pX1+gXe)T then out
of the definition of T-sum and Ling’s theorem (1], for a fixed
z=z* we have:
i (2%) = sup T(ux, (x), mxo(y)) = sup T(ux, (x), wx,((z"-px))/q) =
ST pxtqy=z - X "
- sw Hnin (£, £y 0) + £y (@*-pr)) /)

Let mi<m2. We’ll consider the proof taking into considera-
tion only the left parts of membership functions for fuzzy
numbers X1, Xg, which have the following type:

¢ M1-X mg-y
w00 = L ],ml‘d <M g (V) - L[ — ] mg-d <y< mo;
d d

Ay

}30.95

qme-z*+px

ux, ((2*-px) /a) = L{ -
d

], (z*-amg)/p € x € (2"-amg+ad)/p;

Taking into account that an additive generator f:X—>[0;11]
is a continious and decreasing function with £(1) = 0, it’s easy
to see that f(uxi(x)) is a deacreasing while f(uxz((z*~px)/q) is

an increasing function on the interval
max ((z*-ame)/p; mq-d) < x € min((z*-ame+qd)/p; mq1).
Then the minimum value of the sum: f(uxl(x)) + f(uxg((z*—px)/q)

can be found as a solution of the following equation:

m1-X amg-z"+px pmy+ame-2*
L( = A = (———————— . It’s equal to 2-f(L}f —— })
{ d qd l d

) \
This value reached by x = z"+qmi-qme.
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The same holds true for the right parts of membership
functions for fuzzy numbers X1, Xo.

If me write w1Xqt+twoXo+...+WpXn =
= (WiXq+. .. +Wn-1Xn-1) (Wit. . . +Wn-1)+WnXn, Wi= wi/(Wi+. .. +Wn-1),
then we returned to the case of two fuzzy numbers.

Now it is clear that for Sp = ((wiXq+woXo+...+WnXn))T

._’l Y
() = [min (£(0), n-f(L(|z-Nnl/d)| and Nes (|Sn-Nnl< &) -

on \
-1
= 1-Pos (|Sp-Npl> =) = 1- Syp uo(z) = 1~ Sgp f (min (f(0),

on
|z-Nn|>e |z-Mn|>e

n-f(L(Iz—an/d)) =1 - f—l(min (£ (0), n-f(L(s/d)).

wWhich completes the proof of the theorem 1.

Proof theorem 2. First consider the case n=2. Then taking
into account that T(u,v) < min(uy), by the proof of theorem 1 it
is not difficult to see that

w (z) = sup T(uxi(x), uxz(y)) ¢ sup min (uxl(x), uxz(y)) =
5T  pPRqy=z pX+qy=2

= L{|z- (pmy+ame) | 7d).
And hense for Sp = ((W1Xq+woXo+. . .+WnXn) )T we have

Nes (|Sn-Nnl¢ €) = 1- Syp n_(2) > 1 - L(e/d).
<N
|z-Nnl>e
Theorem 3 follows as a corollary of the priocof of theorem 1
and we omited its proof.
Proof of the Corollary 1. Let £(0) = o, Then taking into
account that the additive generator f 1is a continious and
decreasing function, for any fixed £* we have

. 1 *
Lim  f ( n-f(1-g /d)) - o.

n » @«

-1 . -1
If £(0) = 1, then Lim f (min (£(0), n-f(1-e /d)))=f [f(O))= 0.

n +» «

Proof Corollary 2 is obviously if we taking into acount
that for this case the additive generator is f(x) = - 1nx).



4. Examples.
We’ll consider some examples using our theorem 3.
1. As a triangular norm T we’ll choose Yager’s operator [11:

e 1/
Ty(u,v) = 1 - min(1, (1-0% + (1-v)Q)) T 0<¢q<w

-1
its additive generator is f(x) = (1-x)9, f(0)=1, £ (y)=1-y/9,
Using that we’ll calculate the right part of our theorem 3

£(1-£/d) - (s/d)? f~1(min (£(0), h-(s/d)q)= max (0, 1-n1/9 (£/d)) .

Hence, the law of large numbers in this case works.

If we will consider a special case when q = @ then we will
have Nes (Mp-£ € Sp € Mpte) = £/d. Hence the fuzzy law of large
numbers does not work [2,3,41].

2. As a triangular norm T we’ll choose Dombi’s operator.
Its additive generator is

p - .
£ (x) =(<1—x)/x), p > 05 £(0) = 5 £ (y) = 1/(1+y1/?)

A

When p=1 then we have Hamacher’s operator with zero parameter.
-1

Next n-f(1-e/d) = n-{ (g/d) / (1-es/d) ¥V/P, ¢ (n-f(i—a/d)) -

= (1-e/d)/(1 + (nYP-1).2/4d).

Therefore Lim Nes (Mpn-g£ < Sp € Mpte) = 1 and the fuzzy law
n —» o

of large numbers works.
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