TRIANGULAR NORMS AND MV-ALGEBRAS

JÁN RYBÁRIK

ABSTRACT. MV-algebras on real chains are discussed. A finite chain admits unique MV-algebra. The interval chain admits the MV-algebras isomorphic with the bold fuzzy MV-algebra only.

1. Introduction.

MV-algebras were introduced in 1958 by Chang [2], see also [1,3]. In the same year triangular norms were defined by Schweizer and Sklar [16], see also [6,7,9,17]. The aim of this paper is the investigation of relationship between t-norms and MV-algebras which are defined pointwisely on some universe Ω .

Definition 1.1 [2,3]. An algebra $\{ \mathcal{M}, \mathbf{0}, \mathbf{1}, ', \oplus, \odot \}$ is said to be an MV-algebra iff it satisfies the following equations:

(MV1)	$(x \oplus y) \oplus z = x \oplus (y \oplus z)$	(associativity)
(MV2)	$x\oplus y=y\oplus x$	(symmetry)
(MV3)	$x \oplus 0 = x$	$(neutral\ element)$
(MV4)	$x \oplus 1 = 1$	(annihilator)
(MV5)	$\mathbf{0'} = 1$ and $\mathbf{1'} = 0$	$(boundary\ conditions)$
(MV6)	$x\odot y=(x'\oplus y')'$	$(De\ Morgan\ law)$
(MV7)	$y \oplus (y \oplus x')' = x \oplus (x \oplus y')'$	(compatibility).

Note that (MV7) ensures (x')' = x for all $x \in \mathcal{M}$, i.e., the complementation $': \mathcal{M} \to \mathcal{M}$ is an involutive mapping. In addition, by De Morgan law (MV6), the operation \odot is associative and symmetric, with the neutral element 1 and annihilator 0. Further, the compatibility allows to introduce the lattice structure on \mathcal{M} : $x \vee y = x \oplus (x \oplus y')'$

and the partial order \leq : $x \leq y$ iff $x \vee y = y$.

For more details and other properties of MV-algebras we recommend the overview paper of Cignoli and Mundici [3].

It is evident that if \mathcal{M} is a chain (with respect to \leq), i.e., \leq is a total order, then both operations \oplus and \odot are non-decreasing.

¹⁹⁹¹ Mathematics Subject Classification. 0521.

Key words and phrases. triangular norm, nilpotent t-norm, MV-algebra, semisimple MV-algebra.

27

JÁN RYBÁRIK

Recall that an MV-algebra \mathcal{M} is called **semisimple** (or Archimedean), see [1,10], iff for all $x \neq \mathbf{0}$ there is $n \in \mathbb{N}$ such that $nx = \underbrace{x \oplus \cdots \oplus x}_{} = \mathbf{1}$.

By the duality, for all $x \neq 1$ there is $n \in \mathbb{N}$ such that $x^n = \underbrace{x \odot \cdots \odot x}_{n-times} = 0$.

Definition 1.2. Let $(L, \leq, \mathbf{0}_L, \mathbf{1}_L)$ be a lattice with a partial order \leq , the minimal element $\mathbf{0}_L$ and the maximal element $\mathbf{1}_L$. A binary operation $T: L^2 \to L$ is called a **triangular norm** iff it is

- (1) symmetric, T(u,v) = T(v,u)
- (2) non-decreasing, $u \le u', v \le v' \Longrightarrow T(u,v) \le T(u',v')$
- (3) associative, T(u, T(v, w)) = T(T(u, v), w)
- (4) $\mathbf{1}_L$ is the neutral element, $T(u, \mathbf{1}_L) = u$.

Note that the above definition from [4], see also [5,12], generalizes the standard definition [16,17] of Schweizer and Sklar, which is, indeed, a special case when L = [0, 1].

In what follows, we will restrict ourselves to the case when L is a finite real set or a closed extended real interval and \leq is the usual order of reals.

The relationship between MV-algebras and triangular norms was observed first (indirectly) by Belluce [1], who showed that any semisimple MV-algebra \mathcal{M} is isomorphic with some bold MV-algebra, i.e., an MV-algebra of fuzzy subsets of some universe Ω (corresponding to the maximal ideals of \mathcal{M}) equipped with \odot corresponding to the Lukasiewicz t-norm T_L , $T_L(u,v) = \max(0, u+v-1)$, u'=1-u and \oplus corresponds to the dual operator S_L (Lukasiewicz t-conorm), $S_L(u,v) = \min(1, u+v)$. Another investigation on the relationship of t-norms and MV-algebras were done in the framework of difference posets [8] by Mesiar and Pap [10,11,13].

In the present paper we will discuss another point of view. Namely, let L be either a finite chain, $L = \{x_0, x_1, \ldots, x_n\}$, $n \in \mathbb{N}$, $0 = x_0 < x_1 < \ldots < x_n = 1$ or L = [0, 1]. The general case when L is a finite subset of \bar{R} or the interval $[a, b] \subset \bar{R}$ is a matter of rescaling only.

For a given universe $\Omega \neq \emptyset$, we will deal with the system $\mathcal{M} \equiv L^{\Omega}$ of all L-valued mappings defined on Ω , equipped with pointwisely defined order \leq (partial order if card $\Omega > 1$), a unary operation ' and binary operations \oplus , \odot , i.e., for $f, g \in \mathcal{M}$ and $\omega \in \Omega$ we have

$$f'(\omega) = (f(\omega))'$$

$$\oplus : \mathbf{L}^2 \to \mathbf{L}, \qquad (f \oplus g)(\omega) = f(\omega) \oplus g(\omega)$$

$$\odot : \mathbf{L}^2 \to \mathbf{L}, \qquad (f \odot g)(\omega) = f(\omega) \odot g(\omega).$$

The use the same notation for the above mentioned operations on L and on \mathcal{M} cannot cause any discrepancy.

We are interested under which the circumstances $(\mathcal{M}, \leq, ', \oplus, \odot)$ is an MV-algebra. It is evident that due to its pointwise structure, $(\mathcal{M}, \leq, ', \oplus, \odot)$ is an MV-algebra if and only if $(L, \leq, ', \oplus, \odot)$ is an MV-algebra (with the usual order on the real line).

TRIANGULAR NORMS AND MV-ALGEBRAS

2. FINITE CASE.

Let $L = \mathcal{C} = \{ x_0, x_1, \dots, x_n \}$ be a finite (ordered) set of reals, $0 = x_0 < x_1 < \dots < x_n = 1$. Suppose that there is an MV-algebra $(\mathcal{C}, 0, 1, ', \oplus, \odot)$ such that the corresponding order \leq is the usual order of reals (from \mathcal{C}).

Lemma 2.1. There is the unique involutive complementation $':\mathcal{C}\to\mathcal{C}$

Proof. By [3], the mapping ' is non-increasing, i.e. $x \leq y \Rightarrow y' \leq x'$. Due to involutivity of complementation and finiteness of C, the only appropriate complementation is given by $x_{i'} = x_{n-i}$. \square

Lemma 2.2. The operation $\odot: \mathcal{C}^2 \to \mathcal{C}$ is a t-norm.

Proof. As were mentioned in Section 1, the operation \odot is symmetric, non-decreasing, associative and with neutral element 1. Thus by Definition 1.2, \odot is a t-norm. \square

Lemma 2.3. The operation \odot is determined uniquely by $x_i \odot x_j = x_{i+j-n}$.

Proof. By the duality, in any MV-algebra \mathcal{M} the equality $x \vee y = x \oplus (x \oplus y')'$ is equivalent with the equality $x \wedge y = x \odot (x \odot y')'$. But then $\mathbf{0} = x \odot x'$ for all $x \in \mathcal{M}$.

For $\mathcal{M} = \mathcal{C}$ this means that $x_i \odot x_{n-i} = 0$ and due to monotonicity of \odot we obtain $x_i \odot x_j = 0 = x_0$ whenever $i + j \le n$.

For any $i \in \{0, 1, \ldots, n-1\}$ we have $x_i = x_{n-1} \wedge x_i = x_{n-1} \odot (x_{n-1} \odot x_{n-i})'$. Then the sequence $\{x_{n-1} \odot x_{n-i}\}_{i=0}^{n-1}$ should be strictly decreasing. More, $x_{n-1} \odot 1 = x_{n-1} \odot x_{n-0} = x_{n-1}$ and $x_0 = 0 = x_{n-1} \odot x_1 = x_{n-1} \odot x_{n-(n-1)}$. Therefore $x_{n-1} \odot x_{n-i} = x_{n-i-1} = x_{n-1+n-i-n}$ whenever $n-1+n-i-n \geq 0$. The rest of the proof can be shown in a similar manner. \square

Summarizing all above results, we see that there is unique MV-algebra on C.

Theorem 2.1. Let $C = \{x_0, x_1, \dots, x_n\}$ be a finite real chain. Then there is unique MV-algebra on C with operations \oplus , \odot , ' given by

$$x_i \oplus x_j = x_{\min(n,i+j)},$$

$$x_i \odot x_j = x_{\max(0,i+j-n)},$$

$$x_i' = x_{n-i},$$

respectively.

Remark 2.1. An alternative proof follows from the Belluce's result [1]. By (MV7), the only idempotents of \oplus can be the elements $x_0 = 0$ and $x_n = 1$. Consequently, any MV-algebra on a finite chain $\mathcal C$ is Archimedean. The only maximal ideal on $\mathcal C$ is $\mathcal C$ itself and hence $\mathcal C$ is isomorphic with a system of fuzzy subsets of some singleton equipped with bold connectives, i.e., there is a mapping $g:\mathcal C\to [0,1]$ such that

$$g(x_i \oplus x_j) = \min(1, g(x_i) + g(x_j)) = g(x_i) \boxplus g(x_j),$$

$$g(x_i \odot x_j) = \max(0, g(x_i) + g(x_j) - 1) = g(x_i) \boxdot g(x_j),$$

$$g(x_i') = 1 - g(x_i) = n(g(x_i)).$$

JÁN RYBÁRIK

It is evident that unique mapping g fulfilling these requirements will be given by $g(x_i) = \frac{i}{n}$. Then $x_i \odot x_j = g^{-1}(\max(0, \frac{i}{n} + \frac{j}{n} - 1)) = x_{\max(0, i+j-n)}$. This same result follows also from uniqueness of a difference poset on a finite

chain shown by Riečanová and Bršel [15].

3. The continuous case
$$L = [0, 1]$$
.

($[0,\ 1],\ 0,\ 1,\ ',\ \oplus,\ \odot$) be an MV-algebra (with the usual order of reals). By Trillas[18], see also [7,14], we have the following characterization of involutive complementations on [0, 1].

Lemma 3.1. The unary operation $':[0, 1] \rightarrow [0, 1]$ is an MV-algebra's complementation iff there is an increasing bijection $g:[0, 1] \rightarrow [0, 1]$ that for all $x \in [0, 1]$ holds

$$x' = g^{-1}(1 - g(x)).$$

Note that the function g is called a generator of this complementation and that two generators g and h generate the same complementation if and only if their composition $h \circ g^{-1}$ generates the standard complementation n, n(x) = 1 - xfor all $x \in [0, 1]$.

Similarly as in the finite case we obtain the next result.

Lemma 3.2. The operation $\odot : [0, 1]^2 \rightarrow [0, 1]$ is a t-norm.

Lemma 3.3. The operation $\odot: [0, 1]^2 \to [0, 1]$ is a nilpotent t-norm, i.e., there is a decreasing bijection $f: [0, 1] \to [0, 1]$ such that

$$x \odot y = f^{-1} (\min(1, f(x) + f(y))).$$

Proof. The monotonicity of the operation \odot and (MV7) ensure the continuity of the t-norm \odot . Indeed, for any $y \leq x$ there is $z \ (= (x \odot y')')$ such that $x\odot z=y$, what together with monotonicity implies the continuity of the partial mapping $(x \odot .)$. By [6,7], the joint continuity of \odot follows.

Now, suppose that $x\odot x=x$, i.e., x is an idempotent element of \odot . Then $x \wedge x' = x \odot (x \odot x'')' = x \odot x' = 0$ and thus $x \in \{0, 1\}$. By [6,9,17], \odot is a continuous Archimedean t-norm. However, $x \odot x' = 0$ for all $x \in [0, 1]$ excludes the strict t-norms, and hence \odot is a nilpotent t-norm. The existence of its additive normed generator f (which is unique) is a standard result from [6,9,17]. \square

Finally, we are able to prove the main result of this section.

Theorem 3.1. The system $([0, 1], 0, 1, ', \oplus, \odot)$ is an MV-algebra if and only if it is isomorphic with the bold MV-algebra $([0, 1], [0, 1, n, \boxplus, \square))$, i.e., there is an increasing bijection $h:[0,1] \rightarrow [0,1]$ such that

$$x' = h^{-1}(1 - h(x)),$$

$$x \oplus y = h^{-1}(h(x) \boxplus h(y)) = h^{-1}(\min(1, h(x) + h(y))),$$

$$x \odot y = h^{-1}(h(x) \boxdot h(y)) = h^{-1}(\max(0, h(x) + h(y) - 1)).$$

TRIANGULAR NORMS AND MV-ALGEBRAS

Proof. The if part of this theorem is obvious.

What concerns the only part of the theorem, we apply Lemma 3.3. Then the operation \oplus is a nilpotent t-conorm [6,9,14,17] and hence it is generated by unique normed generator $h:[0,1]\to[0,1]$, h is an increasing bijection, $x\oplus y=h^{-1}(\min(1,h(x)+h(y)).$

Then for all $x \in [0, 1]$ we get

Then for all
$$x \in [0, 1]$$
 and $g(x) = h(x) + h(x')$, i.e., $h(x) + h(x') \ge 1$.
The continuity of h excludes the strict inequality $h(x) + h(x') > 1$ (for any $x \in [0, 1[$), otherwise we will get $x \oplus u = 1$ for some $u < x'$ obtaining a

contradiction. However, then for all $x \in [0, 1]$ it is

 $1 = h(x) + h(x') = h(x) + h(g^{-1}(1 - g(x))) = h \circ g^{-1}(u) + h \circ g^{-1}(1 - u),$ where g is some generator of the complementation ' and u = g(x). But this means that h is also a generator of '. Finally,

$$x \odot y = (x' \oplus y')' = h^{-1}(1 - h(x' \oplus y')) =$$

$$= h^{-1}(1 - h \circ h^{-1}(\min(1, h(x') + h(y')))) =$$

$$= h^{-1}(1 - \min(1, h \circ h^{-1}(1 - h(x)) + h \circ h^{-1}(1 - h(y)))) =$$

$$= h^{-1}(1 - \min(1, 2 - h(x) - h(y))) = h^{-1}(\max(0, h(x) + h(y) - 1)).$$

4. Conclusions.

We have shown the simple structure of MV-algebras on finite chains (the case isomorphic to the finite real chains) and on the real intervals [a, b]. In both cases, the corresponding MV-algebra is Archimedean (semisimple) and hence we can apply the Belluce representation [1] by means of a bold MV-algebra on a singleton. However, this need not be more true for a general (real) chain with minimal and maximal element. Note that in such case, no MV-algebra may exist, or, if it exist, it need not be Archimedean.

Acknowledgment. The author is grateful to Prof. Mesiar for valuable discussions on t-norms. The support of the grant No. 95/5305/471 is kindly announced.

References

- [1] L. Belluce, Semisimple algebras of infinite-valued logic and Bold fuzzy set theory, Canad. J. Math. 38 (1986), 1356 1379.
- [2] C. C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958), 467 490.
- [3] R. Cignoli, D. Mundici, An invitation to Chang's MV-algebras, in: M. Droste, R. Göbel, Advances in Algebra and Model Theory, OPA, Amsterdam (1997), 171 197.
- [4] B. De Baets, R. Mesiar, Triangular norm on product lattices, Fuzzy Sets and Systems (in press).
- [5] G. De Cooman, E. Kerre, Order norms on bounded partially ordered sets, J. Fuzzy Math. 2 (1994), 281 310.
- [6] E. P. Klement, R. Mesiar, Triangular norms, Tatra Mt. Math. Publ. 13 (1997), 169 193.
- [7] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, monograph in preparation.

JÁN RYBÁRIK

[8] F. Kôpka, F. Chovanec, *D-posets*, Math. Slovaca 44 (1994), 21 - 34.

- [9] C. H. Ling, Representation of associative functions, Publ. Math. Debrecen 12 (1965), 182 212.
- [10] R. Mesiar, Fuzzy sets, difference posets and MV-algebras, in: B. Bouchon-Meunier, R. Yager, Fuzzy Logics and Soft Computing, World Scientific, Singapore (1995), 345 352.

[11] R. Mesiar, Differences on [0,1], Tatra Mt. Math. Publ. 6 (1995), 131 - 140.

[12] R. Mesiar, A note on extension of discrete triangular norms, BUSEFAL (to appear).

- [13] R. Mesiar, E. Pap, Extension of differences on [0,1], Int. J. Theor. Phys. 33 (1994), 2317 2323
- [14] H. T. Nguyen, E. H. Walker, A First Course in Fuzzy Logic, CRC Press, Boca Ruten (1997).
- [15] Z. Riečanová, D. Bršel, Contraexamples in difference posets and orthoalgebras, Int. J. Theor. Phys. 33 (1994), 133 141.
- [16] B. Schweizer, A. Sklar, Espaces Métrigues, Aléatoires, Comptes Rendus Acad. Sci. 277, Paris (1958).

[17] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North Holland, New York (1983).

[18] E. Trillas, Sobre funciones de negación en la teoriá de conjuntos diffusos, Stochastica 3 (1979), 47 - 60.

MILITARY ACADEMY, LIPTOVSKÝ MIKULÁŠ, SLOVAKIA E-mail address: rybarik@valm.sk