General fuzzy least squares fitting of several fuzzy variables

Zhao Hongwei

Jilin electrification college, Jilin city, China

Abstract: A model for least-squares fitting of more than two fuzzy variables is described. Previous process obtained for two fuzzy variables by Ma Ming is generalized and the method is different from the previous.

. Keywords: fuzzy least squares fitting, partition, J - consistent

1 Prelimineries

Let E^1 denote a function space such that $u \in E^1$ if and only if $u: R \to [0,1]$ is a function which satisfies the following requirements

- (1) normality: $u(x_0) = 1$, for some $x_0, -\infty < x_0 < +\infty$
- (2) u is upper semicontinuous, i.e.

$$\lim_{x \to t} \sup u(x) = u(t) - \infty < t < + \infty$$

(3) u is a convex fuzzy set, i.e.

$$u(\lambda x + (1 - \lambda)y) \geqslant \min\{u(x), u(y)\}, x, y \in R, 0 \leqslant \lambda \leqslant 1$$

(4)
$$[u]^0 = closure\{t \mid t \in R, u(t) > 0\}$$
 is compact

The space E^1 is called a fuzzy number space and each $u \in E^1$ is called a fuzzy number. Especially, for arbitrary $r \in R$, we call r degenerated fuzzy number.

For $u\in E^1$ and $r\colon 0\leqslant r\leqslant 1$, we define

$$[u]^r = \begin{cases} \{t \mid u(t) \geqslant r\}, & 0 < r \leqslant 1 \\ \text{closure} \{t \mid u(t) > 0\}, & r = 0 \end{cases}$$

The requirements (1) – (4) imposed on the elements of E^1 imply that $[u]^r$, $0 \le r \le 1$ are closed intervals.

Let $\underline{u}(r)$ and $\overline{u}(r)$ denote the left and right endpoints of the closed interval $[u]^r$, respectively $(\underline{u}(0))$ and $\overline{u}(0)$ are the endpoints of the closed interval $[u]^0$.

Definition 1.1 For arbitrary $u, v, w \in E^1$ if they satisfy

$$\underline{\underline{w}}(r) = \underline{\underline{u}}(r) + \underline{\underline{v}}(r)$$
 $\overline{\underline{w}}(r) = \overline{\underline{u}}(r) + \overline{\underline{v}}(r)$

Then w is said to be sum of u and v denoted by u + v

Definition 1.2 For arbitrary $u, w \in E^1$, $k \in R$ if they satisfy

$$\underline{\underline{w}}(r) \begin{cases} k\underline{\underline{u}}(r), & \text{for } k \geqslant 0 \\ k\overline{\underline{u}}(r), & \text{for } k < 0 \end{cases} \qquad \underline{\underline{w}}(r) = \begin{cases} k\overline{\underline{u}}(r), & \text{for } k \geqslant 0 \\ k\underline{\underline{u}}(r), & \text{for } k < 0 \end{cases}$$

Then w is said to be scalar multiplication of k and u denoted by ku.

It is easily seen that (u + v) and (ku) are also on E^1 for $u, v \in E^1$ and $k \in R$. Thus E^1 is a convex cone.

4

Definition 1.3 Let $u, v \in E^1$, a metric D in E^1 is defined as follow

$$D^{2}(u,v) \stackrel{\triangle}{\longrightarrow} \int_{0}^{1} (\underline{u}(r) - \underline{v}(r))^{2} dr + \int_{0}^{1} (\overline{u}(r) - \overline{v}(r))^{2} dr$$

Definition 1.4 Let V be a closed convex cone in E^1 , $u \in E^1$ and v an arbitrary element in V. If a $v_0 \in V$ can be found such that

$$P(u, v_0, v) \stackrel{\triangle}{=} \int_0^1 \left[(\underline{u} - \underline{v}_0)(\underline{v}_0 - \underline{v}) + (\overline{u} - \overline{v}_0)(\overline{v}_0 - \overline{v}) \right] dr \geqslant 0,$$

 $v \in V$

u is said to be v₀-orthogonal to V

Lemma 1 For arbitrary $u, v, w \in E^1$, the following relation holds

$$D^{2}(u, v) = 2D^{2}(v, w) + 2D^{2}(v, w) - 4D^{2}(w, \frac{1}{2}(u + v))$$

Lemma 2 Let V be a closed convex cone in E^1 and $u \in E^1$. Then

- (a) if for some $v_0 \in V$, $D(u, v_0) \leqslant D(u, v)$ for all $v \in V$, then v_0 is unique.
- (b) a necessary and sufficient condition for v_0 be a unique minimizing fuzzy number in V for $D(u, v), v \in V$, is that u is v_0 orthogonal to V.

Theorem 1 Let V be a closed convex cone in E^1 and u an arbitrary element in E^1 . Then:

- (a) a unique $v_0 \in V$ for which $D(u, v_0) \leq D(u, v)$ for all $v \in V$, exist;
- (b) a necessary and sufficient condition for $v_0 \in V$ to be a unique minimizing element of $D(u, v), v \in V$ is that u is v_0 orthogonal to V.

Corollary 1 Let N be a positive integer and V a closed convex cone in $E^1 \times E^1 \times \cdots \times E^1 = (E^1)^N$. Denote by D_N the metric on $(E^1)^N$ define by

$$D_N^2(u, v) = \sum_{i=1}^N D_2^2(u_i, v_i)$$
 $u, v \in (E^1)^N$

where u_i , v_i are the components of u, v. Then for any $u \in (E^1)^N$ there is a unique $v_0 \in V$ such that

$$D_N(u,v_0)\leqslant D_N(u,v)$$

for all $v \in V$

2 Least squares fitting

Let it be supposed that observational results consist of (n + 1) - tuples data

$$X_{1i}, X_{2i}, \dots, X_{ni}, Y_{i} (i = 1, 2, \dots, N)$$

where
$$X_{pi} \in E^{1}(p = 1, 2, \dots, N) Y_{i} \in E^{1}(i = 1, 2, \dots, N)$$

Let X_1, X_2, \cdots, X_n are vectors on $(E^1)^N$. $X_{1i}, X_{2i}, \cdots X_{ni}$ ($i=1,2,\cdots,N$) are components of X_1, X_2, \cdots, X_n , respectively. And let it be supposed that X_1, X_2, \cdots, X_n

are independent variables. Then $V \stackrel{\triangle}{=\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \{\beta_0 + \beta_1 X_1 + \cdots + \beta_n X_n, \ \beta_0, \ \beta_1, \cdots, \ \beta_n \in R\}$ is a convex cone on $(E^1)^N$. Affine function from V to $(E^1)^N$ will be considered

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_n X_n, \quad \beta_0, \beta_1, \cdots, \beta_n \in R$$

Definition 2.1 Let e denote the degenerated fuzzy number 1 and E a N – dimensional vector of components to be e.

Partition the set of integers $\{1, 2, \dots, n\}$ into two exhaustive mutually exclusive subsets J(+) and J(-). One of which may be empty. Each partition like this associate a binary multi – index

$$J = (j_1, j_2, \dots, j_n)$$

defined by

$$j_{p} = \begin{cases} 0, & \text{if } p \in J(+) \\ 1, & \text{if } p \in J(-) \\ \text{especially } J_{0} = (0, 0, \cdots, 0), \ J_{1} = (1, 1, \cdots, 1) \end{cases}$$

Definition 2.2 $C(J) = \{\beta_0 E + \beta_1 X_1 + \dots + \beta_n X_n : \beta_p \geqslant 0, \text{ if } j_p = 0; \beta_p < 0, \text{ if } j_p = 1\}$ Then J is said to be conal index and C(J) a cone decided by conal index J

For a given conal index J, consider the problem of minimizing

$$M(J): r(\beta_0(J), \beta(J)) = \sum_{i=1}^{N} d(\beta_0 + \beta_1 X_{1i} + \dots + \beta_n X_{ni}, Y_i)^2$$
 (**)

we expect to find a parametric solution $\beta_0(J)$, $\beta_1(J)$, ..., $\beta_n(J)$ of equation (*) Definition 2.3 Denote by S(J) the system of n+1 equations

$$\partial r(\beta_0(J), \beta(J))/\partial \beta_p = 0$$
 $(p = 0, 1, 2, \dots, n)$

Suppose that S(J) has a solution $\beta_0(J)$, $\beta_1(J)$,..., $\beta_n(J)$ such that $\beta_p(J) \ge 0$ if $j_p = 0$ and $\beta_p(J) < 0$ if $j_p = 1$. Then say that the model (**) is J – consistent with the data.

A model is thus J – consistent if the formal equation S(J) for unconstrained minimisation are compatible with $\beta_0 E + \beta_1 X_1 + \cdots + \beta_n X_n$ lying in C(J).

We can conclude the theorem as follow by corollary 1 directly. Theorem 2 Let the data set $Y_i, X_{1i}, X_{2i}, \dots, X_{ni}$ $i = 1, 2, \dots, N$ be given for the model (\divideontimes) . For all conal index J, the system S(J) has a unique solution $\beta_0(J), \ \beta_1(J), \dots, \beta_n(J)$.

References

- (1) General fuzzy least squares /Ma Ming et al. / Fuzzy Set and Systems 88(1997) 107 118
- (2) Least Squares Fitting of Several Variables /Phil Diamond / Preprints of Second IFSA congress, Tokyo July 20 25 (1987)329 332