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Our main goal in this paper is to present characterization of implications which are
similar to Dienes implication. Our investigations are inspired by the paper of Smets,
Magrez (7] where they proved the characterization of implications similar to Lukasiewicz
implication. We use here the notation presented by Fodor, Roubens [3].

Definition 1. Any function I: [0,1]? — [0,1] is called fuzzy implication if it fulfils the
following conditions (z,y, z € [0, 1]):

. < 2= I(z,y) > I(2,y),

2. y < 2= I(z,y) < I(s, 2),

13. 1(0,y) = 1,
M. I(z,1) =1,
I5. I(1,0) = 0.

Set of all fuzzy implications will be denoted by FI and set of all continuous fuzzy impli-
cations is denoted by CF1.

Example 1. We list here four implication functions completed e.g. by Fodor, Roubens
(3]. All of them belong to FI.

Lik(z,y) =min(l —z +y,1) (Lukasiewicz [5])
1, ife<

Iep(e,y) = { s (Godel [4])
y, iffrx>y

Ipn(z,y) = max(1 — z,y) (Dienes [2])
1, ifz<y

I =

rs(z,y) {0, fz>y (Rescher [6])

for z,y € [0,1].

Definition 2. Let ¢: [0,1] — [0, 1] be an increasing bijection, I € FI. We say that the
function

I'(z,y) = L(z,y) = ¢ (I(e(2),0(y))), =,y €0,1] (1)
is p-conjugate to I. Implication I € FI is called selfconjugate if I3 =TI for all .
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Theorem 1. Let ¢: [0,1] — [0,1] be an increasing bijection. Forany I € FI (I € CFI)
I e FI (I; € CFI). (2)
Example 2. For implications from Example 1 we have
Izs = Irs, Igp = Iep,

so this implications are selfconjugate. For next two implications we get new fuzzy impli-
cations:

Lx(z,y) = min(p~ (1 — ¢(2) + ¢(y)),1),  z,y €[0,1], (3)
Ipn(z,y) = max(e™' (1 - »(2)),y), =2,y €[0,1]. (4)
Theorem 2 (Smets, Magrez, [7]). Function I € CFI satisfies
(1) I(z,I(y,2)) = I(y, I(z, 2)), for all z,y,2 € [0,1],
(1) z L y < I(z,y) =1, for all z,y € [0, 1]
iff there exists an increasing bijection ¢: [0,1] — [0,1] such that I = I} .

Definition 3. Any function n: [0,1] — [0,1] is called strong negation if it fulfils the
following conditions:

(i) n(0) =1, =(1)=0,
(ii) n is strictly increasing,
(iii) n is continuous,
(iv) n(n(z)) =z, forallz €]0,1].

Theorem 3 (cf. [8]). A function n: [0,1] — [0,1] is a strong negation iff there ezists
an increasing bijection ¢: [0,1] — [0,1] such that

n(z) = ¢ (1 — ¢(z)), x € [0,1]. (5)

Theorem 4 (cf. [1]). Function S: [0,1] = [0,1] satisfies

(i) S is increasing with respect to both variables,

(1’1’) S(II),O) =S(07$) =z, forallz € {0,1]1
(iti)) S(z,z) = z, for all z € ]0,1]
iff S = max.
Lemma 1. If I € CFI satisfies

I(I(z,0),0) = z, for all z € [0,1],

then function n: [0,1] — [0,1] defined by n(z) = I(z,0) is a strong negation.
Theorem 5. Function I € CFI satisfies

(t) I(I(z,0),0) =z, for all z € [0,1],

(it) 1(I(z,0),z) = z, for all z € [0,1],
(i) I(1,z) = z, for all z € [0,1]
iff there exzists an increasing bijection ¢: [0,1] — [0,1] such that I = I}.
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