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Abstract

Originally, fuzzy logic was proposed to describe human feasoning.
Lately, it turned out that fuzzy logic is also a convenient a%:roxima-
tion tool, and that moreover, sometimes a better approximation can be
obtained if we use real values outside the interval [0, 1]; it is|therefore
necessary to describe possible extension of t-norms and t-conorms to such
new values. It is reasonable to require that this extension be aiociative,
i.e., that the set of truth value with the corresponding operation form
a semigroup. Semigroups have been extensively studied in mathematics.
In this short paper, we describe several results from semigroup theory
which we believe to be relevant for the proposed extension of t-norms and
t-conorms.

Introduction. In classical (two-valued) logic, there are only twb truth values:
“true” (which, in the computer, is usually denoted by 1) and |“false” (which
is usually denoted by 0). To represent the uncertainty of human reasoning,
L. Zadeh proposed, in his fuzzy logic, to use additional truth v;ra[lnues, including
truth values which are intermediate between “true” and “false”, i.e., interme-
diate between 1 and 0 [25]. Due to this motivation, the most natural choice
of the set of truth values is the interval [0,1]. This set is indeeg used in most
applications of fuzzy logic. ;

It turned out that fuzzy logic leads to a good description of general sys-
tems. This fact, in itself, should not be surprising, because fuzzy logic reflects
human reasoning which is known to be good in controlling different systems.
Indeed, it was shown that for some reasonable criteria, fuzzy logic indeed leads
to an optimal approximation (see, e.g., [9]). When we consider fuzzy logic as a
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method of representing human uncertainty, then it is usually natural to restrict
ourselves to values from the interval [0,1] (usually, but not always: see, e.g.,
[10}). However, when we consider fuzzy logic as simply a convenient approxi-
mation tool (see, e.g., [8]), then this restriction is no longer justified. Moreover,
it has been shown [24] that if we allow negative values and values greater than
1, we sometimes drastically decrease the number of rules which are necessary to
describe the same input-output behavior with the same accuracy.

For such values, traditional fuzzy operations, e.g., “and” and. “or” operations
(t-norms and t-conorms) are not applicable. We therefore need to analyze the
possibility of extending traditional fuzzy definitions from the interval [0,1] to
more general domains.

It is reasonable to require that this extension be associative, i.e., in mathe-
matical terms, that the set of truth value S with the corresponding operation
form a semigroup.

Semigroups have been extensively studied in mathematics (see, e.g., [1, 11]),
especially topological semigroups, i.e., semigroups in which the underlying space
is endowed with a topology, and the semigroup operation is continuous in this
topology. Some semigroups are too large (infinite-dimensional), such as the
semigroup of all operators in an (infinite-dimensional) Hilbert space, etc. These
semigroups are useful, e.g., in physics, but for our purpose, the most interesting
case is when the topological space S is not too large. In mathematical terms,
we will consider the situation when this set S is a compact space.

In this paper, we describe several results from compact topological semigroup
theory which we believe to be relevant for the proposed extension of t-norms and
t-conorms. Our main goal is to give the knowledge-representation interpretation
of these results; our related secondary goals are: to attract the attention of
researchers in fuzzy theory to these results, and hopefully, to promote new
research which will bring these new results closer to practical applications.

Main Result — Classification Theorem for Topological Semigroups,
and Its Relation to Evolutionary Computation and t¢ Chu Spaces.
In [11], it is shown that an arbitrary compact topological semigroup can be
represented as a combination of semigroups with a certain property which are
called simple semigroups, and a complete classification is given for these simple
semigroups (Theorem 1.3.10, p. 40 of [11]). Namely, it turns out that for every
simple semigroup S, there exist compact spaces X, Y, a compact group H,
and a continuous function ¢ : ¥ x X — H such that S is isomorphic to the
set X x H xY of all triples (z,h,y), where z € X, h € H, y € Y, and the
semigroup operation * has the form

(xlah'l’yl) * (.’L‘g, h2)y2) = (xlyhl * (P(ylaxZ) ) hZaW)' (1)

Vice versa, whenever we have two compact spaces X, Y, a compact group H,
and a function ¢ : Y x X — H, the formula (1) defines a simple semigroup.



14

From this result, we can make three conclusions. Let us first consider the
case when we are interested only in commutative t-norms, for which (z;, by, y1) *
(z2, h2,y2) = (T2, ha,y2) * (x1, h1,1) for all T, 3, hy, h2, y1, and y,. Substi-
tuting the formula (1) into this commutativity formula, we can conclude that
z1 = z2 for all z;,z9 € X, and similarly, y; = yo for all 41,y € Y. In other
words, we can conclude that both the space X and the space Y consist of a
single point. Therefore, S = X x H x Y is isomorphic to the group H. So, the
only commutative simple semigroup is a topological group, and la general com-
mutative semigroup is a combination of topological groups. For example, [0, 1]
with the standard muitiplication operation is a combination of a set (0, 1] which
can be extended to a group, and a set {0} which is equivalent to a 1-element
group.

We have just shown that the commutative operations correspond to the
degenerate case when X and Y are one-point sets, and S is isamorphic to H.
We can also consider the “opposite” degenerate case in which, vice versa, the
group H consists of a single element, and so S is isomorphic toithe set X x ¥
of all pairs (z,y). For such pairs, (1) reduces to a formula (z,y1) * (z2,2) =
(z1,¥2). In other words, when we combine two elements s; = (£;,%:) € S and
82 = (z2,y2) € S, then s = s %57 is obtained by taking the “head” (z;) from the
element s; and adding the “tail” from the element s;. This operation is exactly
the recombination operation which is used in genetic algorithms (and, more
generally, in evolutionary computations) to simulate the interaction between
parents’ genes in producing a child’s DNA (see, e.g., (2, 3, 4]). Thus, genetic
algorithms, which normally are described as a part of soft computing whose
origins and ideas are independent of fuzzy logic, appear naturally when we
extend fuzzy logic to a more general semigroup operation. Moreover, the most
general semigroup operation (1) can be viewed as a combination of fuzzy-logic
type operation which corresponds to S = H, and a genetic algorithm-type
combination which correspondsto S =X x Y.

Our final remark is that according to the above theorem, simple semigroups
are in 1-1 correspondence with functions ¥ x X — H. Such functions form
the basis of a new approach to foundations of concurrency and foundations of
computer science in general which is promoted by V. R. Pratt from Stanford
under the name of Chu spaces (see, e.g, [5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23]). Thus, a general extension of t-norms naturally leads us to Chu
spaces.

Auxiliary Results and Their Relationship With the Existence and
Borderline Character of Classical Truth Values. According to [1], Theo-
rem 1.8, and {11}, Theorem 1.4.2, if a compact topological semigroup S is not
a group (and if it satisfies a natural condition that every element s € S can
be represented as s, * s; for some s1,s2 € S), then S must have at least two
idempotents (i.e., values s for which s x s = s). Since s * s = s for both “classi-
cal” values 0 and 1 (“true” and “false”), this means that we must have at least
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two “quasi-classical” values. This result explains the fundamental role (and the
origin) of 2-valued logic as the basis of all other logics.

According to [11], Theorem 2.4.9, if S is not a group, a unit element 1 cannot
have a Euclidean neighborhood U for which it is inside it; in other words, a unit
element must be on the border of the semigroup (as in the interval [0, 1]).
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