Lower and upper weakly semi-continuous fuzzy multifunctions

Ma Baoguo

(Department of Mathematics, Yanan University, Yanan 716000 P.R.China)

Abstract:

This paper is devoted to the introduction and study of fuzzy lower and upper weakly semi-continuous multifunctions between a general topological space (X,T) and a fuzzy topological space (Y,T_1) . Using the mapping F, and F^* several equivelent conditions of a lower and upper fuzzy weakly semi-continuous multifunction.

Key words: Fuzzy semi-open(closed) sets; Fuzzy pre-semiopen (pre-semiclosed) sets; Fuzzy lower (upper) semi-continuous multifunctions; Fuzzy lower (upper) weakly semi-continuous multifunctions.

1. Preliminaries

Throughout the paper, by (X,T) or simply by X we will mean a topological space in classical sense, and (Y,T_1) or simply by Y will stand for a fuzzy topological space (fts, for short) as defined by Chang's [1]. Fuzzy sets in Y will be denoted A,B,U,V etc. and interior(semi-interior) and closure (semi-closure) and complement of a fuzzy set A in an fts Y will be denoted by Int A (SIntA) Cl A (SCIA) and 1-A respectively when a fuzzy set A is quasi-coincident (q-coincident, for short) with a fuzzy set B in (Y,T_1) , we shall write AqB, if A and B are not q-coincident, denoted by A $\overline{q}B$. The words 'neighborhood' and 'fuzzy topological space' will be abbreviated as 'nbd', and 'fts' respectively.

Definition 1.1. Let (X,T) be a topological space in the classical sense and (Y,T_1) be a fuzzy topological space. $F:X\to Y$ is called a fuzzy multifunction iff for each $x\in X$, F(x) is a fuzzy set in Y.

^{*} This work was partially supported by the special fundation of Shaanxi Educational committee.

Definition 1.2. For a fuzzy multifunction $F: X \to Y$, the $F_*(A)$ and $F^*(A)$ of a fuzzy set A in Y are defined as follows:

$$F_{\bullet}(A) = \{ x \in X : F(x) \neq A \}, \qquad F^{*}(A) = \{ x \in X : F(x) \leq A \}$$

Theorem 1.3.[4] For a fuzzy multifunction $F: X \to Y$ we have $F_{\bullet}(1-A) = X - F^{\bullet}(A)$, for any fuzzy set A in Y.

Definition 1.4. For a fuzzy multifunction $F: X \to Y$ is called:

- (a) fuzzy lower semi-continuous (f.l.s.c., in short) at a point $x_0 \in X$ iff for every fuzzy open set V in Y will $x_0 \in F_*(V)$, there exists a semi-open nbd U of x_0 in X such that $U \subset F_*(V)$,
- (b) fuzzy upper semi-continuous (f.w.s.c., in short) at a point $x_0 \in X$ iff for every fuzzy open set V in Y will $x_0 \in F^*(V)$, there exists a semi-open nbd U of x_0 in X such that $U \subset F^*(V)$,
 - (c) f.l.s.c. (f.u.s.c.) on X iff it is respectively so at each $x_0 \in X$,
 - (d) f.s.c. on X iff it is f.l.s.c. and f.u.s.c.

2. Lower and upper weakly semi-continuous fuzzy multifunctions

Definition 2.1. For a fuzzy multifunction $F: X \to Y$ is called:

- (a) fuzzy lower weakly semi-continuous (f.l.w.s.c., in short) at a point $x_0 \in X$ iff for every fuzzy open set V in Y will $x_0 \in F$ (V), there exists a semi-open nbd U of x_0 in X such that $U \subset F$ (SCIV),
- (b) fuzzy upper weakly semi-continuous (f.u.w.s.c., in short) at a point $x_0 \in X$ iff for every fuzzy open set V in Y will $x_0 \in F^*(V)$, there exists a semi-open nbd U of x_0 in X such that $U \subset F^*(SCIV)$,
 - (c) f.l.w.s.c. (f.u.w.s.c.) on X iff it is respectively so at each $x_0 \in X$,
 - (d) f.w.s.c. on X iff it is f.l.w.s.c. and f.u.w.s.c.
- Remark 2.2. It is clear from Difinition 2.1 and 1.4 that every fuzzy semi-continuous (weakly semi-continuous, clmost semi-continuous [7]) multifunctions is f.w.s.c. where as the converse is not true.
- **Theorem 2.3.** Let $F:X \to Y$ is f.l.w.s.c.(f.u.w.s.c.) iff for every fuzzy open set V in $Y, F_{\bullet}(V) \subset Int F_{\bullet}(SCIV)$ (respectively, $F^{\bullet}(V) \subset Int F^{\bullet}(SCIV)$).

Proof. we prove the theorem for the case of f.l.w.s.c. of F only; there other case is quite similar.

Let F be f.l.w.s.c. and V be f.open in Y. If $x \in F_{\bullet}(V)$, then there exists semi-open nbd U of x in X such that $U \subset F_{\bullet}(SCIV)$ and hence $U \subset Int F_{\bullet}(SCIV)$.

Conversely, let $x \in X$ and V be fuzzy open set in Y such that $x \in F_*(V)$. Then $x \in F_*(V) \subset Int F_*(SCIV) = U$ (say). Thus U is a semi-open nbd of x such that $U \subset F_*(SCIV)$ and consequently, F is f.l.w.s.c..

Theorem 2.4. If $F: X \to Y$ is f.l.w.s.c., for every fuzzy pre-semiopen set V in $Y, F_{\bullet}(V) \subset Int F_{\bullet}(SClV)$.

Proof. Let F be f.l.w.s.c. and V be any fuzzy pre-semiopen set in Y. For any $x \in F$, (V), then there exists semi-open nbd U_x of x in X such that $U_x \subset F$, $(SCIIntSCl\ V) \subset F$, (SCIV) and hence F, $(V) \subset V$ $(U_x : x \in F$, $(V) \subset V$ (SCIV), and hence F $(V) \subset Int\ F$ (SCIV).

Theorem 2.5. If $F:X \to Y$ is f.u.w.s.c., for every fuzzy pre-semiopen set V in Y, $F^*(V) \subset Int F^*(SCIV)$.

Proof. Similar to Theorem 2.4. and omitted.

Theorem 2.6. If a fuzzy multifunction $F: X \to Y$ is f.l.w.s.c. on X, then $SCl\ F_*(V) \subset F_*(SCl\ V)$ for any fuzzy open set V in Y.

Proof. Let $x \notin F_*(SCIV)$, where V is a fuzzy open set in Y. Then $F(x) \neq SCIV$ so $F(x) \leq 1 - SCIV$. By fuzzy lower weakly semi-continuity of F, there exists a semi-open nbd U of x in X such that $F(z) \leq SCI(1 - SCIV) \leq 1 - V$ for all $z \in U$. Thus $F(z) \neq V$, i.e. $z \notin F_*(V)$, for all $z \in U$, hence $U = \bigcap F_*(V) = \emptyset$. Since U is a semi-open nbd of x, it then follows that $x \notin F_*(SCIV)$.

Theorem 2.7. If a fuzzy multifunction $F: X \to Y$ is f.u.w.s.c. on X, then $SCl\ F^*(V) \subset F^*(SCl\ V)$ for any fuzzy open set V in Y.

Proof. Similar to Theorem 2.6. and omitted.

Theorem 2.8. Let $F:X \to Y$ is fuzzy multifunctions then following are equivalent:

- (a) F is f.l.w.s.c.,
- (b) for any fuzzy open set V in $Y, F_*(V) \subset Int F_*(SCIV)$ and $F^*(V) \subset F^*(SCIV)$.

Proof. Evident.

Theorem 2.9. Let $F: X \to Y$ is fuzzy lower weakly semi-continuity if for each fuzzy open set V, $F_{\bullet}(ClV)$ is fuzzy semi-open set.

Proof. Straightforward.

References

- [1] C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl 24(1968) 182-190.
- [2] N.S.Papageorgiou, Fuzzy topology and fuzzy multifunction, J.Math.Anal. Appl. 109(1985) 397-425.
- [3] M.N.Mukherjee and S.Malaker, On almost continuous and weakly continuous fuzzy multifunctions, Fuzzy set and system, 41(1991) 113-125.
- [4] B.G. Ma, On fuzzy semi-continuous and irresolute multifunction, © ICIK95 August 21-25, 1995, Dalian, P.R.China.
- [5] S.Dang, A.Behera. S.Nanda, On fuzzy weakly semi-continuous functions, Fuzzy set and system, 67(1994) 239-245.
- [6] L.A.Zadeh, Fuzzy sets, Inform and Control 8(1965) 338-353.
- [7] B.G. Ma, Lower and upper almost semi-continuous fuzzy multifunction, Fuzzy Sets Theory and Applications (Hebei University Press 1998.8, Baoding P.R.China).