FUZZY LESS WEAKLY URYSOHN SPACES Xiao Jia-Hong

Dept .of Mathematics, Ling Ling Teachers' College,

Yongzhou Hunan 425000, China

Abstract: In this paper, the concept of fuzzy less weakly Urysohn space is introduced. Its properties are systematically discussed

Key words: Fuzzy topological space, Less weakly Urysohn space, Semiopen set, Romote-neighborhood.

1. Introduction and preliminaries

In [6], Chen introduced the fuzzy Urysohn space in fuzzy topological space. And we introduced and studied the fuzzy less weakly Urysohn space in fuzzy topological space in [11]. In this paper, we introduce and study the fuzzy less weakly Urysohn space which is the weaker form of fuzzy weakly Urysohn space.

In this paper, (x, δ) will denote a Fuzzy topological space. A^0, A^- and A' will denote respectively the interior closure and complement of the fuzzy set A. Fuzzy set A is called fuzzy semiopen iff there is a $B \in \delta$ such that $B \le A \le B^-$ [1]. Fuzzy set A is called fuzzy strongly semiopen iff there in a $B \in \delta$ such that $B \le A \le B^{-0}$ [2]. Fuzzy set A is called semiclosed iff A' is semiopen. Fuzzy set A is called strongly

semiclosed iff A' is strongly semiopen.

 $A_0 = \bigcup \{B: B \le A, B \text{ fuzzy semiopen }\}$ $A_- = \bigcap \{B: B \ge A, B \text{ fuzzy semiclosed }\}$ $A^{\triangle} = \bigcup \{B: B \le A, B \text{ fuzzy strongly semiopen }\}$ $A^{\triangle} = \bigcap \{B: B \ge A, B \text{ fuzzy strongly semiclosed }\}$

are called the semiinterior, semiclosure, strongly semiinterior and strongly semiclosure of A [1,2], respectively.

Definition 1.1[9] Let (X, δ) be a fuzzy topological space, e be a fuzzy point, $P \in \delta'$ and $e \notin P$. Then P is called a remote-neighborhood of e, and the set of all remote-neighborhood of e will be denoted by $\eta(e)$.

Definition 1.2[9, 6, 11] Let (X, δ) be a fuzzy topological space, (X, δ) is called a fuzzy Hausdorff (Urysohn, weakly Urysohn) space if for every pair of fuzzy points x_{α} and y_{λ} with $x \neq y$ there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$ such that $P \cup Q = 1$ ($P^{0} \cup Q^{0} = 1$, $P^{\Delta} \cup Q^{\Delta} = 1$).

2. Fuzzy less weakly Urysohn space

Definition 2.1 Let (X, δ) be a fuzzy topological space, If for every pair of fuzzy points x_{α} and y_{λ} with $x \neq y$ there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$ such that $P_0 \cup Q_0 = 1$. Then (X, δ) is called a fuzzy less weakly Urysohn space.

Obviously the following statements are valid:

fuzzy Urysohn space

- ⇒ fuzzy weakly Urysohn space
- ⇒ fuzzy less weakly Urysohn space
- ⇒ fuzzy Hausdorff space.

Let (X, δ) be a fuzzy topological space, Then (X, δ) Theorem 2.2 is a fuzzy less weakly Urysohn space iff for every pair of fuzzy points x_{α} and y_{λ} with $x \neq y$ and $\alpha, \lambda \in [0,1)$ there are fuzzy open neighborhoods V and W about x_{α} and y_{λ} , respectively, such that $V_{-} \cap W_{-} = 0$. Proof. Necessity. Let (X, δ) be a fuzzy less weakly Urysohn space, x_{α} and y_{λ} be two fuzzy points in X with $x \neq y$ and $\alpha, \lambda \in [0,1)$. Choose two real numbers s and t satisfying $0 < s < 1-\alpha$ and $0 < t < 1-\lambda$. By Definition 2.1 there are $P \in \eta(x_*)$ and $Q \in \eta(y_i)$ $P_0 \cup Q_0 = 1$. Then P' and Q' are fuzzy open neighborhoods about x_a and y_{λ} , respectively, and

$$(P')_- \cap (Q')_- = (P_0)' \cap (Q_0)' = (P_0 \cup Q_0)' = 1' = 0$$
.

Sufficiency. Let the given condition hold. Suppose x_{α} and y_{λ} are two fuzzy points with $x \neq y$. Choose two real numbers s and t satisfying $1-\alpha < s < 1$ and $1-\lambda < t < 1$. In the light of the assumption,

there are fuzzy open neighborhoods V and W about x_i and y_i , respectively, such that $V_- \cap W_- = 0$.

Then $x_{\alpha} \succeq V'$ and $y_{\lambda} \succeq W'$, i.e., $V' \in \eta(x_{\alpha})$ and $W' \in \eta(y_{\lambda})$, and $(V')_0 \cup (W')_0 = (V_-)' \cup (W_-)' = (V_- \cap W_-)' = 0' = 1$.

Thus (X, δ) is a fuzzy less weakly Urysohn space.

Definition 2.3 Let (X, δ) be a fuzzy topological space, (X, δ) is called a semi-interior additive if $(A \cup B)_0 = A_0 \cup B_0$ for any two fuzzy sets A and B in X.

Theorem 2.4 Let (X,δ) be a fuzzy topological space, If (X,δ) is Hausdorff and semi-interior additive, then (X,δ) is a fuzzy less weakly Urysohn space.

Proof. This is immediate from Definition 2.2 and 2.3.

Definition 2.5 Let x be a fuzzy point and $S = \{s(n), n \in D\}$ a fuzzy net [9] in (X, δ) . Then x is called a Δ -limit point of S (or S Δ -converges to x) if for each $P \in \eta(x)$ we have eventually $s(n) \leq P_0$.

Theorem 2.6 (X,δ) is a fuzzy less weakly Urysohn space iff no fuzzy net in X can Δ -converges to two fuzzy point x_{α} and y_{λ} with $x \neq y$.

Proof. Necessity. Let $S = \{s(n), n \in D\}$ be a fuzzy net in X which

 Δ -converges to a fuzzy point x_{α} , and y_{λ} be another fuzzy point with $x \neq y$. Because X is a fuzzy less weakly Urysohn space, there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$ such that $P_0 \cup Q_0 = 1$. Since eventually $s(n) \leq P_0$, therefore eventually $s(n) \leq Q_0$. Hence S dose not Δ -converge to y_{λ} .

Sufficiency. Assume that the condition is true and x_{α} and y_{λ} are two fuzzy points with $x \neq y$. If for every $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$, $P_0 \cup Q_0 = 1$, then there exists a fuzzy point $S(P,Q) \notin P_0 \cup Q_0$. Take

$$S = \{ S(P,Q) : (P,Q) \in \eta(x_{\alpha}) \times \eta(y_{\lambda}) \}$$

Then S is a net in X with the following relation:

$$(P_1,Q_1) \le (P_2,Q_2)$$
 iff $P_1 \subset P_2$ and $Q_1 \subset Q_2$ where $(P_1,Q_1), (P_2,Q_2) \in \eta(x_\alpha) \times \eta(y_\lambda)$

obviously, eventually $s(n) \not \in P_0$, so $S \triangle$ -converges to x_α . Similarly, $S \triangle$ -converges to y_λ as well . This contradicts the hypothesis. Consequently, there are $P \in \eta(x_\alpha)$ and $Q \in \eta(y_\lambda)$ such that $P_0 \cup Q_0 = 1$.

Thus (X,δ) is a fuzzy less weakly Urysohn space.

Theorem 2.7 Let (X,δ) be a fuzzy less weakly Urysohn space and (Y,τ) a fuzzy topological space. If $f:(X,\delta)\to (Y,\tau)$ is a fuzzy homeomorphic mapping, then (Y,τ) is also a fuzzy less weakly Urysohn

space.

Proof. Let y_{α} and y_{λ}^{*} be two fuzzy points in (Y, τ) with $y \neq y_{\lambda}^{*}$. Then there are two fuzzy points x_{α} and x_{λ}^{*} in (X, δ) with $x \neq x^{*}$ such that

$$f(x_{\alpha}) = y_{\alpha}$$
 and $f(x_{\lambda}^*) = y_{\lambda}^*$.

Since (X, δ) is a fuzzy less weakly Urysohn space, there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(x_{\lambda}^{*})$ such that $P_{0} \cup Q_{0} = 1_{x}$,

Because f is a fuzzy homeomorphic mapping, we have

$$f(P) \in \eta(f(x_{\alpha})) = \eta(y_{\alpha})$$

and

$$f(Q) \in \eta(f(x_{\lambda}^*)) = \eta(y_{\lambda}^*).$$

Again, Since fuzzy semiopen set in preserved under fuzzy homeomorphic mapping, we have

$$(f(P))_0 \bigcup (f(Q))_0 \ge (f(P_0))_0 \bigcup (f(Q_0))_0$$

$$= f(P_0) \cup f(Q_0) = f(P_0 \cup Q_0) = f(1_x) = 1_y$$

Thus (Y, τ) is a fuzzy less weakly Urysohn space.

References

[1]K.K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weak continuity, J.Math.Anal. Appl. 82(1981)14-32.

[2] Bai Shi-Zhong, Fuzzy strongly semiopen sets and fuzzy strong

- semicontinuity, Fuzzy sets and Systems 52 (1992) 345-356.
- [3] Bai Shi-Zhong, Fuzzy S-irresolute mappings, J. Fuzzy Math. 4 (1996) 2: 397-411
- [4] Bai Shi-Zhong, Q-Convergence of nets and weak separation axioms in fuzzy lattices, Fuzzy sets and Systems, 88 (1997) 3: 379-386.
- [5] C.L.Chang, Fuzzy topological space, J-Math . Appl. 24 (1968) 182-190 .
- [6] S.L.Chen, Fuzzy Urgsohn spaces and α -stratified fuzzy Urgsohn spaces, Fifth IFSA world congress (1993) 453-456.
- [7] J.L.Kelley, General Topology (princeton University press, princeton, NY 1955).
- [8]B.M.Pu and Y.M Liu, Fuzzy topology I, J. Math. Anal. Appl> 76 (1980) 571-599.
- [9] G.J. Wang, A new fuzzy compactress defined by fuzzy nets, J. Math. Anal. Appl. 94(1983) 1-23.
- [10] G.J. Wang, Theory of L-fuzzy topological spaces, pross of Shaanxi Normal University, Xian, 1988.
- [11] Xiao Jia -Hong, Fuzzy weakly Urysohn spaces, BUSEFAL 3 (1998).
- [12] L.A. Zadeh, Fuzzy sets, Inform and Control 8 (1965) 338-353.