FUZZY LESS WEAKLY URYSOHN SPACES Xiao Jia-Hong Dept .of Mathematics, Ling Ling Teachers' College, Yongzhou Hunan 425000, China Abstract: In this paper, the concept of fuzzy less weakly Urysohn space is introduced. Its properties are systematically discussed Key words: Fuzzy topological space, Less weakly Urysohn space, Semiopen set, Romote-neighborhood. ## 1. Introduction and preliminaries In [6], Chen introduced the fuzzy Urysohn space in fuzzy topological space. And we introduced and studied the fuzzy less weakly Urysohn space in fuzzy topological space in [11]. In this paper, we introduce and study the fuzzy less weakly Urysohn space which is the weaker form of fuzzy weakly Urysohn space. In this paper, (x, δ) will denote a Fuzzy topological space. A^0, A^- and A' will denote respectively the interior closure and complement of the fuzzy set A. Fuzzy set A is called fuzzy semiopen iff there is a $B \in \delta$ such that $B \le A \le B^-$ [1]. Fuzzy set A is called fuzzy strongly semiopen iff there in a $B \in \delta$ such that $B \le A \le B^{-0}$ [2]. Fuzzy set A is called semiclosed iff A' is semiopen. Fuzzy set A is called strongly semiclosed iff A' is strongly semiopen. $A_0 = \bigcup \{B: B \le A, B \text{ fuzzy semiopen }\}$ $A_- = \bigcap \{B: B \ge A, B \text{ fuzzy semiclosed }\}$ $A^{\triangle} = \bigcup \{B: B \le A, B \text{ fuzzy strongly semiopen }\}$ $A^{\triangle} = \bigcap \{B: B \ge A, B \text{ fuzzy strongly semiclosed }\}$ are called the semiinterior, semiclosure, strongly semiinterior and strongly semiclosure of A [1,2], respectively. **Definition 1.1**[9] Let (X, δ) be a fuzzy topological space, e be a fuzzy point, $P \in \delta'$ and $e \notin P$. Then P is called a remote-neighborhood of e, and the set of all remote-neighborhood of e will be denoted by $\eta(e)$. **Definition 1.2**[9, 6, 11] Let (X, δ) be a fuzzy topological space, (X, δ) is called a fuzzy Hausdorff (Urysohn, weakly Urysohn) space if for every pair of fuzzy points x_{α} and y_{λ} with $x \neq y$ there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$ such that $P \cup Q = 1$ ($P^{0} \cup Q^{0} = 1$, $P^{\Delta} \cup Q^{\Delta} = 1$). ## 2. Fuzzy less weakly Urysohn space **Definition 2.1** Let (X, δ) be a fuzzy topological space, If for every pair of fuzzy points x_{α} and y_{λ} with $x \neq y$ there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$ such that $P_0 \cup Q_0 = 1$. Then (X, δ) is called a fuzzy less weakly Urysohn space. Obviously the following statements are valid: fuzzy Urysohn space - ⇒ fuzzy weakly Urysohn space - ⇒ fuzzy less weakly Urysohn space - ⇒ fuzzy Hausdorff space. Let (X, δ) be a fuzzy topological space, Then (X, δ) Theorem 2.2 is a fuzzy less weakly Urysohn space iff for every pair of fuzzy points x_{α} and y_{λ} with $x \neq y$ and $\alpha, \lambda \in [0,1)$ there are fuzzy open neighborhoods V and W about x_{α} and y_{λ} , respectively, such that $V_{-} \cap W_{-} = 0$. Proof. Necessity. Let (X, δ) be a fuzzy less weakly Urysohn space, x_{α} and y_{λ} be two fuzzy points in X with $x \neq y$ and $\alpha, \lambda \in [0,1)$. Choose two real numbers s and t satisfying $0 < s < 1-\alpha$ and $0 < t < 1-\lambda$. By Definition 2.1 there are $P \in \eta(x_*)$ and $Q \in \eta(y_i)$ $P_0 \cup Q_0 = 1$. Then P' and Q' are fuzzy open neighborhoods about x_a and y_{λ} , respectively, and $$(P')_- \cap (Q')_- = (P_0)' \cap (Q_0)' = (P_0 \cup Q_0)' = 1' = 0$$. Sufficiency. Let the given condition hold. Suppose x_{α} and y_{λ} are two fuzzy points with $x \neq y$. Choose two real numbers s and t satisfying $1-\alpha < s < 1$ and $1-\lambda < t < 1$. In the light of the assumption, there are fuzzy open neighborhoods V and W about x_i and y_i , respectively, such that $V_- \cap W_- = 0$. Then $x_{\alpha} \succeq V'$ and $y_{\lambda} \succeq W'$, i.e., $V' \in \eta(x_{\alpha})$ and $W' \in \eta(y_{\lambda})$, and $(V')_0 \cup (W')_0 = (V_-)' \cup (W_-)' = (V_- \cap W_-)' = 0' = 1$. Thus (X, δ) is a fuzzy less weakly Urysohn space. **Definition 2.3** Let (X, δ) be a fuzzy topological space, (X, δ) is called a semi-interior additive if $(A \cup B)_0 = A_0 \cup B_0$ for any two fuzzy sets A and B in X. **Theorem 2.4** Let (X,δ) be a fuzzy topological space, If (X,δ) is Hausdorff and semi-interior additive, then (X,δ) is a fuzzy less weakly Urysohn space. Proof. This is immediate from Definition 2.2 and 2.3. **Definition 2.5** Let x be a fuzzy point and $S = \{s(n), n \in D\}$ a fuzzy net [9] in (X, δ) . Then x is called a Δ -limit point of S (or S Δ -converges to x) if for each $P \in \eta(x)$ we have eventually $s(n) \leq P_0$. **Theorem 2.6** (X,δ) is a fuzzy less weakly Urysohn space iff no fuzzy net in X can Δ -converges to two fuzzy point x_{α} and y_{λ} with $x \neq y$. Proof. Necessity. Let $S = \{s(n), n \in D\}$ be a fuzzy net in X which Δ -converges to a fuzzy point x_{α} , and y_{λ} be another fuzzy point with $x \neq y$. Because X is a fuzzy less weakly Urysohn space, there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$ such that $P_0 \cup Q_0 = 1$. Since eventually $s(n) \leq P_0$, therefore eventually $s(n) \leq Q_0$. Hence S dose not Δ -converge to y_{λ} . Sufficiency. Assume that the condition is true and x_{α} and y_{λ} are two fuzzy points with $x \neq y$. If for every $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$, $P_0 \cup Q_0 = 1$, then there exists a fuzzy point $S(P,Q) \notin P_0 \cup Q_0$. Take $$S = \{ S(P,Q) : (P,Q) \in \eta(x_{\alpha}) \times \eta(y_{\lambda}) \}$$ Then S is a net in X with the following relation: $$(P_1,Q_1) \le (P_2,Q_2)$$ iff $P_1 \subset P_2$ and $Q_1 \subset Q_2$ where $(P_1,Q_1), (P_2,Q_2) \in \eta(x_\alpha) \times \eta(y_\lambda)$ obviously, eventually $s(n) \not \in P_0$, so $S \triangle$ -converges to x_α . Similarly, $S \triangle$ -converges to y_λ as well . This contradicts the hypothesis. Consequently, there are $P \in \eta(x_\alpha)$ and $Q \in \eta(y_\lambda)$ such that $P_0 \cup Q_0 = 1$. Thus (X,δ) is a fuzzy less weakly Urysohn space. **Theorem 2.7** Let (X,δ) be a fuzzy less weakly Urysohn space and (Y,τ) a fuzzy topological space. If $f:(X,\delta)\to (Y,\tau)$ is a fuzzy homeomorphic mapping, then (Y,τ) is also a fuzzy less weakly Urysohn space. Proof. Let y_{α} and y_{λ}^{*} be two fuzzy points in (Y, τ) with $y \neq y_{\lambda}^{*}$. Then there are two fuzzy points x_{α} and x_{λ}^{*} in (X, δ) with $x \neq x^{*}$ such that $$f(x_{\alpha}) = y_{\alpha}$$ and $f(x_{\lambda}^*) = y_{\lambda}^*$. Since (X, δ) is a fuzzy less weakly Urysohn space, there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(x_{\lambda}^{*})$ such that $P_{0} \cup Q_{0} = 1_{x}$, Because f is a fuzzy homeomorphic mapping, we have $$f(P) \in \eta(f(x_{\alpha})) = \eta(y_{\alpha})$$ and $$f(Q) \in \eta(f(x_{\lambda}^*)) = \eta(y_{\lambda}^*).$$ Again, Since fuzzy semiopen set in preserved under fuzzy homeomorphic mapping, we have $$(f(P))_0 \bigcup (f(Q))_0 \ge (f(P_0))_0 \bigcup (f(Q_0))_0$$ $$= f(P_0) \cup f(Q_0) = f(P_0 \cup Q_0) = f(1_x) = 1_y$$ Thus (Y, τ) is a fuzzy less weakly Urysohn space. ## References [1]K.K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weak continuity, J.Math.Anal. Appl. 82(1981)14-32. [2] Bai Shi-Zhong, Fuzzy strongly semiopen sets and fuzzy strong - semicontinuity, Fuzzy sets and Systems 52 (1992) 345-356. - [3] Bai Shi-Zhong, Fuzzy S-irresolute mappings, J. Fuzzy Math. 4 (1996) 2: 397-411 - [4] Bai Shi-Zhong, Q-Convergence of nets and weak separation axioms in fuzzy lattices, Fuzzy sets and Systems, 88 (1997) 3: 379-386. - [5] C.L.Chang, Fuzzy topological space, J-Math . Appl. 24 (1968) 182-190 . - [6] S.L.Chen, Fuzzy Urgsohn spaces and α -stratified fuzzy Urgsohn spaces, Fifth IFSA world congress (1993) 453-456. - [7] J.L.Kelley, General Topology (princeton University press, princeton, NY 1955). - [8]B.M.Pu and Y.M Liu, Fuzzy topology I, J. Math. Anal. Appl> 76 (1980) 571-599. - [9] G.J. Wang, A new fuzzy compactress defined by fuzzy nets, J. Math. Anal. Appl. 94(1983) 1-23. - [10] G.J. Wang, Theory of L-fuzzy topological spaces, pross of Shaanxi Normal University, Xian, 1988. - [11] Xiao Jia -Hong, Fuzzy weakly Urysohn spaces, BUSEFAL 3 (1998). - [12] L.A. Zadeh, Fuzzy sets, Inform and Control 8 (1965) 338-353.