The algebraic structure of the sets of all ideals with the same tip

Qingde Zhang Defan Cao

Department of Computer, Liaocheng Teachers College, Shandong 252059, People's Republic of China

Abstract: In this paper, we investigate the algebraic structure of the set $F_i(R)$ of all fuzzy ideals and the sets $F_i^t(R)$ of all fuzzy ideals with the same tip "t" for a ring R. Then we discuss the relations of these algebraic systems by the theory of homomorphism and isomorphism. **Keywords**: equivalence relation, partition, quotient set, semigroup, lattice.

1. Preliminaries

In this section, we give some definitions and results which will be used in the sequel. Throughout this paper, R always represents a ring.

Let X be a set. A fuzzy set μ in X is a map $\mu: X \to [0, 1]$. F(X) denotes the set of all fuzzy set of X.

Definition 1.1 Let $\mu \in F_i(R)$. If for any $x, y \in R$,

(1)
$$\mu$$
 (x-y) $\geqslant \mu$ (x) $\land \mu$ (y),

(2)
$$\mu$$
 (xy) $\geqslant \mu$ (x) $\land \mu$ (y),

then we call μ a fuzzy subring of R.

Definition 1.2 Let μ be a fuzzy subring of R. The tip of μ means μ (0), the value at the addition unit 0 of the given ring R.

Definition 1.3 Let μ be a fuzzy subring of R. If for any $x, y \in R$,

$$\mu(xy) \geqslant \mu(x) \lor \mu(y),$$

then we call µ a fuzzy ideal of R.

If μ is a fuzzy subring of R,then $\mu(0) \geqslant \mu(x)$, $x \in R$: If R has product unit e, then $\mu(e) \geqslant \mu(x)$ for $x \in R$ and $x \neq 0$.

We denotes the set of all fuzzy ideals of R by the symbol $F_i(R)$. We define the binary relation \sim of $F_i(R)$ as follows:

$$\mu \sim \eta \Leftrightarrow \mu (0) = \eta (0)$$
.

Obviously, \sim be a equivalent relation.

Let $F_i^t(R) = \{\mu | \mu \in F_i(R) \text{ and } \mu(0) = t\}$, then the partition of $F_i(R)$ determined by \sim is: $F_i(R) / \sim = \{F_i^t(R) | t \in [0,1]\}$.

2. The operations on $F_i(R)$ and $F_i^t(R)$ and their algebraic structure

We will study the algebraic structure of $F_i(R)$ and $F_i'(R)$ from the respect of lattice, sum $\mu + \eta$, product $\mu \circ \eta$.

Theorem 2.1 $F_i(R)$ forms a complete lattice under the ordering of fuzzy set inclusion \leq .

Definition 2.1 Let μ and η be a fuzzy sets of R. We define the sum $\mu + \eta$ as follows: $(\mu + \eta)(x) = \bigvee \{ \mu(y) \land \eta(z) \mid y + z = x \}, x \in \mathbb{R}.$

Theorem 2.2 $F_i(R)$ forms a monoid under the sum + with the unit $1_{\{0\}}$, denoted by $(F_i(R), +)$.

Proof. Omitted.

Author investigated the lattice structure of $F_i^{\prime}(R)$ in [2] and obtained the following results:

Theorem 2.3 $F_i^t(R)$ forms a complete and modular lattice under the ordering of fuzzy set inclusion \leq , denoted by $(F_i^t(R), \vee, \wedge)$, and have

$$\mu \lor \eta = \mu + \eta$$
.

Remark In $F_i(R)$, $\mu \vee \eta = \mu + \eta$ is not right.

Theorem 2.4 $F_i^t(R)$ forms a monoid to the sum + with the unit $t_{\{0\}}$, denoted by $(F_i^t(R), +)$.

Proof. Omitted.

Definition 2.2 Let μ and η be fuzzy subsets of R, we define the product $\mu \circ \eta$ as follows:

$$(\mu \circ \eta)(\mathbf{x}) = \bigvee \left\{ \bigwedge_{i=1}^{n} (\mu(y_i) \wedge \eta(z_i)) \middle| n \in \mathbb{N}, \sum_{i=1}^{n} y_i z_i = \mathbf{x} \right\}.$$

It is obviously that above definition 2.2 is the generalization of the product in the classicall ring theory.

Theorem 2.5 $F_i^t(R)$ forms a semigroup to the product \circ , denoted by $(F_i^t(R), \circ)$. If R has the unit e, then $(F_i^t(R), \circ)$ forms a monoid with the unit $t_{\{e\}}$.

Proof. For any μ , $\eta \in F_i^t(R)$,

$$(\mu \circ \eta)(0) = \bigvee \left\{ \bigwedge_{i=1}^{n} (\mu(y_i) \wedge \eta(z_i)) \middle| n \in \mathbb{N}, \sum_{i=1}^{n} y_i z_i = 0 \right\}$$

$$\geqslant \mu(0) \wedge \eta(0)$$

$$= t,$$

by $\mu(y_i) \le t$, $\eta(z_i) \le t$, so $(\mu \circ \eta)(0) \le t$, hence $(\mu \circ \eta)(0) = t$.

For any $x, y \in R$,

$$(\mu \circ \eta)(x) \wedge (\mu \circ \eta)(y)$$

$$= (\sqrt{\sum_{i=1}^{n} (\mu(y_{i}) \wedge \eta(z_{i}))} | n \in \mathbb{N}, \sum_{i=1}^{n} y_{i}z_{i} = x \}) \wedge (\sqrt{\sum_{j=n+1}^{n+m} (\mu(y_{j}) \wedge \eta(z_{j}))} | m \in \mathbb{N}, \sum_{j=n+1}^{n+m} y_{j}z_{j} = y \})$$

$$= \sqrt{\sum_{i=1}^{n} (\mu(y_{i}) \wedge \eta(z_{i})) \wedge (\bigwedge_{j=n+1}^{m+n} (\mu(y_{j}) \wedge \eta(z_{j}))} | m, n \in \mathbb{N}, \sum_{i=1}^{n} y_{i}z_{i} = x, \sum_{j=n+1}^{m+n} y_{j}z_{j} = y \}$$

$$\leq \sqrt{\sum_{i=1}^{m+n} (\mu(y_{i}) \wedge \eta(z_{i}))} | m, n \in \mathbb{N}, \sum_{i=1}^{m+n} y_{i}z_{i} = x + y \}$$

$$= (\mu \circ \eta)(x + y),$$

Obviously, $(\mu \circ \eta)(-x) = (\mu \circ \eta)(x)$,

$$(\mu \circ \eta)(xy) = \bigvee \left\{ \bigwedge_{i=1}^{n} (\mu(y_i) \wedge \eta(z_i)) \middle| n \in \mathbb{N}, \sum_{i=1}^{n} y_i z_i = xy \right\}$$

$$\geqslant \bigvee \left\{ \bigwedge_{i=1}^{n} (\mu(xy_i) \wedge \eta(z_i)) \middle| n \in \mathbb{N}, \sum_{i=1}^{n} (xy_i) z_i = xy \right\}$$

$$\geqslant \bigvee \left\{ \bigwedge_{i=1}^{n} (\mu(y_i) \wedge \eta(z_i)) \middle| n \in \mathbb{N}, \sum_{i=1}^{n} y_i z_i = y \right\}$$

$$= (\mu \circ \eta)(y),$$

Similarly, $(\mu \circ \eta)(xy) \ge (\mu \circ \eta)(x)$, so

$$(\mu \circ \eta)(xy) \geqslant (\mu \circ \eta)(x) \vee (\mu \circ \eta)(y),$$

hence $\mu \circ \eta \in F_i^t(R)$, associative is right[3], these implies that $F_i^t(R)$ forms a semigroup to \circ .

If R has unit e, it is easy to know $t_{\{e\}}$ is the unit of $(F_i^t(R), \circ)$.

From the proof above we can also obtain the following result:

Definition 2.6 $F_i(R)$ forms a semigroup to \circ , denoted by $(F_i(R), \circ)$. If R has unit e, $(F_i(R), \circ)$ forms a monoid with unit $1_{\{e\}}$.

3. Homomorphism and isormorphism

Let $\mu \in F(R)$, $a \in (0, \infty)$. If $a(\mu(x)) \in [0, 1]$, for all $x \in R$, then we call a is productable with μ , and define the product $a \mu$ as follows:

$$(a \mu)(x)=a(\mu(x)), x \in R.$$

Lemma 3.1 Let $a \in (0, \infty)$, $b_i \in [0,1]$, $i \in I$, I is an index set, and $ab_i \in [0,1]$, then $a(\bigvee_{i \in I} b_i) = \bigvee_{i \in I} (ab_i)$.

Theorem 3.2 Let s, $t \in (0, 1]$, then

- (1) $(F_i^s(R), \vee, \wedge) \cong (F_i^t(R), \vee, \wedge)$
- (2) $(F_{\iota}^{s}(R), +) \cong (F_{\iota}^{\iota}(R), +),$
- (3) $(F_i^s(R), \circ) \cong (F_i^t(R), \circ)$

Proof. We define the map f from $F_i^s(R)$ to $F_i^t(R)$ as follows

f:
$$F_i^s(R) \to F_i^t(R)$$
, $\mu \mapsto \frac{t}{s}\mu$.

For $\mu \in F_i^s(R)$, obviously, $\frac{t}{s}$ is productable with μ , and $\frac{t}{s}\mu \in F_i^t(R)$. It is not difficult to verify that f is a bijection from $F_i^s(R)$ to $F_i^t(R)$.

(1)
$$\forall \mu, \eta \in F_i^s(R),$$

$$f(\mu \vee \eta) = \frac{t}{s} (\mu \vee \eta) = (\frac{t}{s} \mu) \vee (\frac{t}{s} \eta) = f(\mu) \vee f(\eta),$$

$$f(\mu \wedge \eta) = \frac{t}{s} (\mu \wedge \eta) = (\frac{t}{s} \mu) \wedge (\frac{t}{s} \eta) = f(\mu) \wedge f(\eta),$$
hence, $(F_{i}^{s}(R), \vee, \wedge) \cong (F_{i}^{t}(R), \vee, \wedge),$

$$(2) \forall \mu, \eta \in F_{i}^{s}(R), \mathbf{x} \in \mathbf{R},$$

$$f(\mu + \eta)(\mathbf{x}) = (\frac{t}{s} (\mu + \eta))(\mathbf{x}) = \frac{t}{s} ((\mu + \eta)(\mathbf{x}))$$

$$= \frac{t}{s} (\vee \{\mu(x_{1}) \wedge \eta(x_{2}) | x_{1} + x_{2} = x\})$$

$$= \vee \{(\frac{t}{s} \mu(x_{1})) \wedge (\frac{t}{s} \eta(x_{2})) | x_{1} + x_{2} = x\})$$

$$= (\frac{t}{s} \mu + \frac{t}{s} \eta)(\mathbf{x})$$

$$= (f(\mu) + f(\eta))(\mathbf{x}).$$
so, $(F_{i}^{s}(R), +) \cong (F_{i}^{t}(R), +).$ Obviously, $f(s_{\{0\}}) = f(t_{\{0\}}).$

$$(3) \forall \mu, \eta \in F_{i}^{s}(R), \mathbf{x} \in \mathbf{R},$$

$$f(\mu \circ \eta)(\mathbf{x}) = (\frac{t}{s} (\mu \circ \eta))(\mathbf{x}) = \frac{t}{s} ((\mu \circ \eta)(\mathbf{x}))$$

$$= \frac{t}{s} (\vee \{\frac{n}{s} (\mu(y_{i}) \wedge \eta(z_{i})) | n \in N, \sum_{i=1}^{n} y_{i} z_{i} = x\})$$

$$= \vee \{\frac{t}{s} (\frac{n}{s} (\mu(y_{i}) \wedge \eta(z_{i})) | n \in N, \sum_{i=1}^{n} y_{i} z_{i} = x\}$$

$$= \vee \{\frac{n}{s} (\frac{t}{s} \mu(y_{i})) \wedge (\frac{t}{s} \eta(z_{i})) | n \in N, \sum_{i=1}^{n} y_{i} z_{i} = x\}$$

$$= ((\frac{t}{s} \mu) \circ (\frac{t}{s} \eta))(x)$$

$$= (f(\mu) \circ f(\eta))(x),$$
that is $f(\mu \circ \eta) = f(\mu) \circ f(\eta)$, hence $(F_{i}^{s}(R), \circ) \cong (F_{i}^{t}(R), \circ)$.

4. The algebraic structure of the quotient set

If R has unit e, then $f(s_{\{e\}}) = t_{\{e\}}$.

In this section, we introduce some operations on the quotient set $F_i(R)/\sim$ by the operations of $F_i(R)$ and study their algebraic structure.

For any $\mu \in F_{\mu}(R)$, the symbol $[\mu]$ denotes the class which contains μ , i.e.,

$$[\mu] = \left\{ \eta \middle| \eta \in F_i(R) \text{ and } \eta(0) = \mu(0) \right\}.$$

Theorem 4.1 The following definitions are all the operations of quotient set $F_i(R)/\sim$.

- (1) $[\mu] \lor [\eta] = [\mu \lor \eta],$
- (2) $[\mu] \wedge [\eta] = [\mu \wedge \eta],$
- (3) $[\mu] + [\eta] = [\mu] + [\eta],$
- (4) $[\mu] \circ [\eta] = [\mu \circ \eta]$

Proof. Omitted.

Theorem 4.2 The quotient set $F_i(R)/\sim$ forms a complete lattice under the operation (1),(2) of Theorem 4.1, denoted by $(F_i(R)/\sim, \vee, \wedge)$.

Proof. We can easily obtain this result from Theorem 2.1 and the natural map from $F_i(R)$ to $F_i(R)/\sim$.

Theorem 4.3 $F_i(R)/\sim$ forms a monoid to the operation (3) of Theorem 4.1 with the unit $[1_{\{0\}}]$, denoted by $(F_i(R)/\sim,+)$, and

$$(F_i(R),+) \sim (F_i(R)/\sim,+).$$

Theorem 4.4 $(F_i(R)/\sim,+)$ forms a semigroup to the operation (4) of the Theorem 4.1, denoted by $(F_i(R)/\sim,\circ)$, and

$$(F_i(R), \circ) \sim (F_i(R)/\sim, \circ).$$

If R has unit, then $(F_i(R)/\sim, \circ)$ is monoid with unit $[1_{\{e\}}]$, and the homomorphism above preserve the unit.

The proof of Theorem 4.3 and 4.4 is similar to the Theorem 4.2.

Reference

- [1] N. Ajmal and K. V.Thomas, The lattice of fuzzy ideals of a ring, Fuzzy Sets and Systems 74(1995) 371-379.
- [2] Qingde Zhang and Guangwu Meng. On the lattice of fuzzy ideals of a ring, Fuzzy Sets and Systems(to appear).
- [3] Yandong Yu and Zhudeng Wang, TL-subrings and TL-ideals. Part 1.Basic concepts, Fuzzy Sets and Systems, 68(1994) 93-103.
- [4] G.Birkhoff, Lattice Theory (AMS Coll. Publ, Providence, RI,1967).
- [5] C.Faith ,Algebra I.Ring, Modules, and Categories(Spring-Verlag, Berlin Heidelberg New York 1981).
- [6] N.Jacobson, Basic Algebra 1(Freeman, San Francico, CA, 1980).