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Lattice implication algebras and MV—algebras

Liu Jun - Xu Yang .
Applied Mathematics Department , Southwest jiaotong University, 610031, ChengDu, P.R. China

Abstract Lattice implication algebras is an algebraic structure whiéh is established by combining
lattice and implication algebras. In this paper, the relationship between lattice implication
algebras and MV —algebra was discussed, and then proved that both of the categorys of

the two algebras are categorical equivalence. Finally, the infinitely dlstnbutmty in lattice
implication algebras were proved.
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1. INTRODUCTION

In order to research the logical system whose propositional value is given in a lattice from
the semantic viewpoint, we have proposed the coneept of lattice implication algebras in [1], and
have disqussed their some properties. MV-algebras were invented by C.C.Chang®in order to
provide an algebraic proof of the completeness theorm of the infinite-valued logic of Lukasiewicz.
Having served this purpose, the properties of these algebra;s have been discussed by many people.
~ In this paper, we discussed the relationship of the two algebraic structures. Futher, we obtain an

important property of lattice implication algebras. i.e. the infinitely disfributivity.

2. PRELIMINARIES

Definition 1. Let L, V, A, )’be a complemented lattice with the universal bounds 6, I.
—: L x L be a mapping ,- (L, V, A,', —)iscalled a lattice impiication algebra if it satisfies
forall a, b, ¢ € L, the following conditions:

dPa—=(b—-c)=b—-(@-c)

Ipa—a=1I
'(IB)a—~b =b—a
(Ipa—-b=b—-a=I=a=5>b

(Is)@@—-b)~b=0b-a)~a
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kp@V b=+ ¢c=(@-=c)A(b—-¢)

ky) (@ A b)y=c =(a — c)V(b_—» c)

If “-» satisfies (I)~0g), then L, V, A, " =)is said to be a quasi-lattice
implication algebra.

Recall the pfoperties of lattice implication algebra in [1], we give some needed results.‘

Proposition1, In'la_ttice implication algebra L =(L, V, A, "', =, O, D), the
lattice operation V and A can be defined by “—»"as: xVy =(x—-y)=y, xAy=

VyY, and L, V, A, ' O, I is a complemented distributive lattice with universal -

~ bounds 0, I, where the order realition is been defined by:

x<Ly iff x—-y=1

Proposition 2" (L, V, A, ', =) ivs; a lattice implication algebra iff (L, V,
A, ', —)is aquasi-lattice implication algebra, and satisfies the following conditions:

(O, VvV, A)isadistributive lattice;

(2)forallx-, yE€EL, x=-yY)~y=xVy

(3)forallx, y €L, x<y iff x—-y-=1

The concept about lattice implication hommorphism and lattice 'implication algebra category
could be seen in [5-6].

Definition 2. An MV-algebrais analgebra (A, +, -, *, O, 1), whereAisa

nonempty set , O and I are constant elements of A, + and - are binary operations, and * is a
unary operation, satisfying the following axioms (where we let x V y =(x - y*) +y, XAy
“x+y)y):

Axl x+y=y+x Axl' x - y=y - x

Ax2 x+(y+z)=(x+y_)+i CAX2 x - (y - D=(x-Yy) z

* * -
Ax3 - x+x =1 A3 x -x =0
Ax4 x+1=1 Axd x-0=0
Ax5 x+0=x AxS' x -1 =x
Ax6 (x+y)*=x*- y"= ‘ Ax6' (x - y)*=x*+ y*

- *
Ax7T x=(x) _ Ax8 0 =1



26

Ax9 xVy=yVx Ax9' x Ay=yAX

Ax1I0 xVyVz)=xVyVz AxI0" X AGYAD)=(x Ay)Az

AxXll x+(yAZD=(x+ YA +2z AxIl' x -(yVZ=x - y)VE - 2

Definition 3!, Forallx, y € A, wewritex <y iff xVy=y, '

Theorem3?!, Let(A, +, -, *, O, I)beanMV-algebra,then:

(1) The relation < is a partial ordering over A; forallx, y € A, x V yand x A y are
respectively the sup and the inf of the pair (x , y) with respect to <; also, foreveryx € A, 0
<x<I.

(2) A is a complemented distributive lattice with respect to the operations V, A and *.

Proof. (1) see [2 : proposition 1.11, 1.14],

(2) The distributivity of A is proved in [9], and by [2.: Theoorem 1.2]: (x V y)* =x'A
y*, and Ax7: Vx € A, X =(x*)*, and from {7], * is an inverse involution, so A is a
complemented distributive lattice.

Definition 41l Let A, =(A,, +, -, *, O;, [)and A, =(A,, +, -, *,
O;, I,) are the MV-algrbras, we say that the function W: A, - A, is a homomorphism from
Ao A, If ¥(O)=0,, ¥()=1,, and ¥ preserves +, - and * over A. |

Definition 5%'. The category of MV-algebra, denoted by AC, is the category has as

objects all MV-algebra and as arrows all homomorphism between the corresponding MV-algebra.

3. Lattice implication algebras and MV-algebras

In the following ,we will prove the categorical equivalence between the category of lattice

implication algebras and the category of MV-algebras.

Given an MV-algebra A =(A, +, -, *, O, ), we define [(A)=(A, -, ',
O, D), by stipulating that forall x, y € A, x—~y = X+ y and x' = x*; Further, given
MV-algebra A, and A, and a homomophism ¥: A, — A,, we define [(¥) =
I'(A)—>TIA), by(¥)=¥. |

Theorem 1. [ is a categorical equivalence between the category of MV-algebras and the

category of lattice implication algebras.
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For the proof, we prepare a few lemmas:

Lemmas 1. I'(A) is a lattice implication algebra.

Proof. According to proposition 2, we must prove that [((A) is a complemented lattice
implication algebra, that is, ['(A) satifies (I, ) ~(I;), and satifies (1), (2) and (3) in propos;ition
2. In the following foreveryx, y, z € A,

concerning(I,) x-—=(y—-2)-= <+ (y* + 7)

“x +y)+z (Ax2)
* *
=(y +Xx)+z (Ax1)
* *
=y +(x +2 (Ax2)
=y —»(x - z)
. *
concerning (I,) x = x =x + x =1 (Ax3)
conceming(I3) X—+y= x* +y = X +(y*)* (Ax7)
* %k *
=(y) +x (Ax1)
* *
= y -+ X
— yl__’ xI

concerning(ly), by {2, Theorem 1.13], Vx, y € A, x<y iff X'+ y =1, then
from the definition of T(A), x <y iff x —y = L And because x — y=y—-x=1, ie
*

X +Yy =y*+ x =Lhencex <yandy < x, thenx =y,

concerning (IS) X-y)—y-= (x* + y)* +y

* K *
c=xory) +y " (Ax6)
*
=X - y)+y (Ax7)
=xVy
=yVx (Ax9)

*

* L2 I 1
=(y +x ) +x (Ax6)
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e+ x (AX7)
=(y » 0= x

During the proofs of (I;) and (Ig), we have forallx, y € A,x<y iff x- y = I

and- x-=y)>y=xVy=(x- y*) +y, and from proposition3 , A is a distributive lattice
with respectto V and A, and * is ;1 inverse involution , so A is a complemented distributive
lattice with respectto V, A and *, hencé A, +, -, % 0, DHandT(A)=CA, -, |,
O, ) both are complemented distributive lattice , using proposition 2 , then I'(A) is a lattice
implication algebra.

Lemmas 2. I is a full and faithful functor from the category of MV-algebras and the

category of lattice implication algébras. T~
Proof. Itis easy to proved by the definition of I'(A).
For the proof of Theorem 1, we provide an equivalent descripition of MV-algebra:
Lemmas 3®. LetB= (B, +, -, *, O, I) beanalgebraoftype (2, 2,
1, 0, 0),thenBisaMV-algebra iff B satisfies the following:
P G+y)+rz=x+F+20 (p2) x+0-=x

P3) x+y=y+x (P4 x+1=1
@®5) () =x (6) O =1
@) x+x =1 @) (X +y) +y=(x+y) +x

@) x-y=&+y)
Lemmas 4. Every lattice implication algebraL = (L, -, ', O, ) isisomorphic
(indeed equal) to I'(A), for some MV-algebra A.
Proof. letA = (L, +, -, *, O, I) bedefined by stipulsting that forall x, y

*

€L, wehave:Dl x =x"; D2 x+y=x-y; D3 x- -y=x-—-YyY
To prove that A is a MV-algebra , by lemmas 3, it is sufficent to show that A obeys the
equations (pl) ~ (p9).
concerning (pl) x + y)+z=K—=y)—z (by D2)
==X~y (by I,)

=xX=(@2-y) Gyl)
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=x=@F'~2 (by 1)

=x+(y +72
concerning (p2) x + 0 = X=0=Xx"=X ( ' " isainverse involutian)
concerning (p3) x +y=x—y=y->x=y +X (byD2andI,)

concerning(pd) x + [ =x-=I1=T>x=0-x=1 ( proposition 2 in [2])
concerning (pS) x = x"= X (by D1)
concerning (p6) o = o'=1

concerning (p7) x + x =x—+x=1

concerning (p8) (x + ) +y =(x = y)= y- - (byD2)
=y~ x—x (byI,)
=(y'+ X'+ x (by D2)
= +y) +x (by D1 and (p3))

concerning (p9) x - y=(x—-y)Y=x+y)= (x* + y*)* (by D3, D2and D1)

We have just proved A is an MV-algebra. To complete the proof, we must prove I'(A) = L.

*

In fact, defining x>y = x +y, X'= x*, by Lemmas 1, knowing F(A)=(L, —, ', O,

[) is a lattice implication algebra.

* *
Further, forallx, y € L, X—FY = X +y=(x)T>y=(x)—-W>y=

X—5Y hence, L=I"(A).
Finally, by Lemmas 1 and Lemmas 4, using the categorical equivalence theorem [4,

Theorem 1, P91], we have: I' is a categorical equivalence between the category of MV-

algebras and the‘category of lattice implication algebras.

4 . The distributivity of lattice implication algebras

Following the above arguments, we can obtain some importment properties of lattice
implication algebra.
Recall the realationship between MV-algebra and lattice-order abelian group.

Let G=(G, +, -, 0, V, A)be alattice-order abelian group (called l-group in short)
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with order unit el, and we denote by < G the order induced on G by the lattice operations. Let

G'={g € G ; 8 > 0}, Anelementu € G is a strong order unit in G (“order” unit , in the
g 24

terminology of [10} ) iff foreachg € G there is a natural number n such that g < G nu,

If (G, u)and (G', u') are l-group with order unit u and u' respectively , then a map -
A: G — G'is said to be a unital I-homomorphism if and only if A is a group homomorphism
and a lattice homomorphism such that A (u)= u', Unital -homomorphisms are precisely the
morphisms in the category of I-group with order unit. We write (G, u)2(G', u')ifand only if
there is an unital I-isomorphic from G onto G'.

Definition 6. LetG =(G, +, -, Og:» N g+ V @ beal-group with order unit

u. Wedefine (G, w=(A, &, -, * O, I) by the following:
A=[0, uF{g € G; 0<Gg<Gu}, and forallx, y € A,

x(-By=u/\G(x+y), x*=u—x

Xy =(®)=0Vgx+y-uw, O=0g, [=u
Further, given a unital I-homomorphism 6: (G, u)—(G', v), wedefine T (8) Z(G,
- Z(G, u)by £(8)=06 IA, thatis X (©)isarestrictionof 6 to A .
Recall from [3]:
Proposition 4Pl Let T be the above definition, then I is a full and faithful functor
from the category of I-group with order unit u to the category of MV-algebra. and for all these

groups (G, u) the lattice group operations on the unit interval [Og» u] of the group G with

order unit u, agree with the MV lattice operations on A= Z (G, u).
Proposition 5°). LetA =(A, ®, -, *, O, Dbean MV-algebra , then there exists
an l-group I (G, u) with unitu, suchthat A 2 Z(G, u).
As a n immediate consequence of proposition 4 and proposition 5, we have the following :
Theroem 2. The functor T is an categorical equivalence between the category of I-
groups with order unit , and the category of MV-algebras. ’
According to the above results, we are going to establish now the relationship between |-

group with order unit and lattice implication algebra.

In the following, T is an equivalent functor from the category of MV-algebras to the
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~

category of lattice implication algebras as above, and I is an equivalent functor from the
categorysof I-group with order unit to the category of lattice implication algebra as above.

Theorem 3. The composite functor Q =T I of the functor I and X is a categorical
equivalence from the category of I-groups with order unit to the category of lattice implication
algebras.

Corollary 1. For all lattice implication algebras, there must exist a I-group G with order
unit u, such that L @ Q(G, u), where G, u) is (Gu), —, ', 0, I) by stipulating
the following:

G=[0, u]={g € G; OG <ge< G u},and foralllx, yeL,

x~y=uA(’;(u—x+'y),\x'=u—):, I[=u,
Proof. Wedeﬁnitex@y=u/\G(x+y), x*=u—x, thenx*+y=uAG(u-

X +y). By the definitive approach of the functor Cand T in theorem 3 , we have Q=["o L.
Using the above results, we will obtain the following : A
We say that a lattice L =< L, A v > satisfies the infinitely distributive law provides the
following property holds true:

If the family {x:}; €] of element of L has a supremum in L, then for each x in L, the

family {x A X} ¢ jalso has a supremum in L and we have :

xA (vx) =\ (xax)
ies ! iet !
It is well known (see, for instance, {10, p312]) that each l-group satisfies the infinitely

distributive law, since for each family {x;}; ¢ jofelements of G(u), the supremum of {x}; ¢ 1

exists in G if and only if it exists in G(u). Then the infinitely distributive law holds in G[u]. By
taking into account that isomorphic lattice implication algebras have isomorphic uhderlying
lattice and by theorem 2, we have the following :
" Theorem 4. For all lattice implication algebra L =(L, Vv, A, ', =, O, ),
(L, V, A)satisfies the infinitely distributive law as above:
In lattice implication algebra(L, V, A, -, "), wehave: foreachx y ¥, zE€EL
X=yV=Ex->y9VE-—y) )

By theorem 4, wecanextend V in(2)to any one supremum.
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Theorem 5. Let(L, V, A, ', -)bealattice implication algebra, if the family {x};

€1 1£ of elements of L has a supremum in L, then we have :

x> (vx) =y (x2x) €))

ies ! ie

Proof. Accordingﬂ to corollary 1, it is sufficent to verify that the equation (3) holds in

G[u]. In this algebra, we have: x = (\/x ) = uA G(u-x+(\/ x)), by the property of l-group
ies ! : ief !
in[10, P292: (wxr(y/x)) =\ (uxdx)
iet ie

That the supremum in the left equation exists implies the existence of the supremum in the

right equat_}on, similarly, for the eqution (x V y)— z= (x = Y)A(y = z), we can replace the

V and A by any supremum and any infimum.
In fact: (\/x)— b = A (x — b) holds in residuated lattice, hence also holds in lattice
ies ! ies !

implication algebras.
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