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1 PRELIMINARIES

Let X be a topological space, C be a nonempty subset of X , a mapping A
C—[0,1] s called a fuzzy subset over C, we denote by & (C) the famity
of all fuzzy subsets over C, a maping F;: C — & (C) is called fuzzy
mapping overC, let A€ F(C), Q& [0,1], set (A)g= {u]|Aw) =Q,
u € C} is called the Q—cut set of A.

DEFINITION 1.1 Let F.C— % (C) be a fuzzy mapping, if P € Csuch
that Fp(p) = magin(u) , then pis called a fixed point of F.
u€

DEFINITION 1.2 Let F.C— 5 (C) be a fuzzy mapping, if for any A
€ [0,1] and any y,z € C, it is true that
Fx(ly + (1 — MD2) Z min{Fz(y), Fz(2)}

then F over C is called convex.
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DEFINITION 1.3 Let F.C — 5 (C) be a fuzzy mapping, if the
membership function Fz(y) is upper semi—continuous over C X C (as a

real ordinary function), then F over C is called closed.

DEFINITION 1.4 Let F.C - 5 (C), O(z):.C - [0,1], V¥ z € C,
Fr = (Fx)ow = {(u|Fz(u) Z20(x), u€ C}C, F.C— 2is a set—
valued mapping, Y DCC, F(D) = LEJDFx, letz, € C, D, = {z,},D, =

conv({zo} U F z4) ,D,y, = conv({zo} U F(D,)), n>0, D, © D, C
D,&--CD, D, &, V=UD,=UD,,, = U conv({z,} U
n=0 nz=0 n=0

Fz,(D,)) = conv({z,} UF(V)),Vis called the set induced by F and z,.

LEMMA 1.5 (KyFan [1][3]) Let X be a real topological vector space
which is locally convex and Hausdorff. Let C be a nonempty, compact
and convex subset of X and T":C — 2€ a set—valued mapping having the
following properties

. (1) for any z in C the set Tz is convex, compact and nonempty

(2) the set graph T = LGJC{(x,y) y y&€ Tz} isaclosed set in X X X.

Then there exists a fixed point pof T, i.e. p € Tp

LEMMA 1.6 Let X be a Hausdorff topological space, C be a nonempty,
compact and convex subset of X, T.C — 2° be a set — valued mapping
such that ¥V = € C, set Tz is compact, if T:C — 2€ is upper semi —
continuous, then set graph T’ =ILE,IC{ (x,y), y € Tx}is a closed set in X
X X.

Proof. Let zx = xo,yx € Txg, yx —> yo, we shall show that y, € Tz,.
If yo & Tz, by X be a Hausdorff topological space, ¥ y € Tz, there
exists a neighbourhood of y Wy & X, & a neighbourhood of v, Vy C X,
WyNVy=&, Tz, deqr {(Wyl|y € Tx,}, by set Tx,is compact, there

eXItS V15 V25 s Yu € Ty, such that Tz, CUWy, =W, Let V = NV,
i=1 i=1
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V' is a neighbourhood of y,, such that W NV = ¢, by T .C — 2%is upper
semi—continuous, there exists a neighbourhood of x, | such that YV xzx
€ U, Txxk CW, thus yx € W, moreover W nVv = s Yk = Yo, this
is a contradiction, thus y, € Tz, By y, € T'z,, thus graph T is a closed.

2 MAIN RESULTS

THEOREM 2.1 Let X be a real topological vector space which is locally
convex and Hausdorff, Cis a nonempty closed convex subset of X, F.C
— F (C) is a closed convex fuzzy mapping over C,

(1) Suppose that there exists a lower semi — continuous function
O(x): C—(0,1]such that¥ z € C, Fr = (Fx)owy # O, there exists
x, € C such that the set V induced by F and Z, 1s a compact subset of C,
then there exits » € C such that Fp(p) =Z0(p);

(2) O(x) = rileachx(u): C->(0,1]such thatV =z € C, Fr =
(Fx)owy 7 & » moveover for any y € C, Fz(y) as a function of x € C
is lower semi—continuous, there exists z, € C such that set V induced by
F and z,is a compct subset of C, then there exists a point p € C such that
Fp(p) = riléig(Fp(u) » l.e. pis a fixed point of F. .

Proof. Let Fr = (Fx)ow = {(u|Fx(u) = 0(z) ,u E'C} , then ¥.C —
2%, the set V induced by F and z,is a compact subset of C,V = conv({z,)
UFWV) VzeV, FzCV. First, we prove that for eachz € V, Fr
Is a nonempty convex compact set of V., .

YVzEVCC, Fr=(Fx)ou, # &, ifV y,2€ Fx, A€ [0,1] by
F.C—> % (c)is a convex fuzzy mapping over C, Fz(Ay + (1 — A)z) >
min{F.(y), Fx(2)} =0, S Ay + (1 — Dz € (Fx)ow = Fz, Fz
is a convex set. Let {y,};e; & Frand y,—~y, € V & C, thus (z,y;) —>
(z,0) moreover Fz(y;) = O(zx) by F.C - F(C) is a closed fuzzy

mapping, Fx(y), as a function over C X C, is upper semi— continuous.

This leads to the conclusion that Fz( Vo) = 1_127le z(y;) =Z0(x), Sy, €

(Fx)ow = Fx, Fris a closed subset of V,by Fx TV, Vis compact set,
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. Fxis a compact set.

Next, we prove that set graph F = LEJV{ (z,y) |y € Fz}is a closed

x

subset in X X X. Let {(x;,¥;) };esis a net of graph F, and z;—~ z, € V,
y; > ¥ € V, by Fis closed and O(z).C — (0,1] is lower semi —

continuous, we have Fx,(y,) = hmF z;(y;) = hmO(:c ) = limO(x;) >

O(x0) s "+ 30 € (Fxo)owy = Fzo, (xo,yo) € graphF, graph F'is closed in
X X X.

For F.V — 2" applying lemma 1. 5 (Ky Fan [1], [31) there exists p
€ Csuch that p € Fp = (Fplop» i.e. Fp(p) = O(p).

When O(x) = Téig(Fx(u) :C —> (0,1] such that the conditions in

(2). , by the same way we can prove that for Y = € V, Fxis a nonempty
convex compact set, now we prove the set graph F is closed in X X X.
Let {(z;, ¥;)}jeris a net of graph F, y, € Fx,,andz;—>z, € V, y;—=>
Yo €V, (25 ;) > (x0550) €V XV, by Fis closed and for any y € C,

Fz(y) as a function of x € C is lower semi — continyous, we have:

F:co(yo)>li;anl(y,-)>li-r-nO(x-) > lim maxFz,(x) > hmFx (@) >

j uCc

hmFz;(u) = Fzo(u), ¥V u E C, thus Fz,(y,) = maxeo(u) = O(x,),

vo € Fzy, therefore (xos¥0) € grapF, grapF is closed inX X X. ForF.

V — 2" applying lemma 1. 5. there exits p € C such that p € Fp =
(FpPlogpms 1. e. Fp(p) = rzlgchp(u), P is a fixed point of F. This
completes the proof of Theorem 2. 1.

Let T':C— 2is a set—valued mapping, by using T we define a fuzzy
mapping F as follows: F.C - & (C), z - X 1., where & r, is the
characteritic function of Tz, Taking O(z) =1, V = € C it is easy to
prove that when V x € C, Tx is a convex closed subset of C, F.C —
F(C) 1s a convex closed fuzzy mapping. Thus we have:

COROLLARY 2. 2 Let X,C satisfy the conditios of Theorem 2. 1.
Let T:C — 2 is a set — valued mapping such that V = € C, Tz is a
nonempty convex closed subset of C, and there exists -, € C the set V

induced by 7" and z, is a compact subset of C. If set graph T is closed in X
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X X , then there exists p € C such that p € T'p.

COROLLARY 2.3 Let X,C,T satisty the conditions of corollary 2. 1.
I T .C — 2°is upper semi—continuous, then there exists p € C such that
pe Tp.

Proof for T':C — 2€ applying lemma 1. 6, by T :C — 2€is upper semi

—continuous, we have set graph 7' is closed in X X X.

REMARK by corollary 2. 2 and 2. 3, it is easy to see that Theorem 2.
1 improves and generalizes Ky Fan’s fixed point and corresponding

important results of [1,2,3,4,5]
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