A NEW GENERALIZATION OF KY FAN'S FIXED POINT THEOREM FOR FUZZY MAPPINGS

SHI CHUAN and ZHU SHUNRONG

Department of Applied Mathematics

Nanjing University of Science & Technology

Nanjing, 210014, People's Republic of China

ABSTRACT: This paper bring forward a new generalization of K_Y Fan's fixed point theorem for fuzzy mappings, the results presented improve and generalize K_Y Fan's fixed point theorems and the corresponding recent important results.

KEY WORDS AND PHRASES: Fuzzy Mathematics, fuzzy mapping, fixed point theorem, Ky Fan's fixed point theorem.

1991 AMS SUBJECT CLASSIFICATION: 47H10, 54H25.

1 PRELIMINARIES

Let X be a topological space, C be a nonempty subset of X, a mapping A: $C \rightarrow [0,1]$ is called a fuzzy subset over C, we denote by $\mathscr{F}(C)$ the famity of all fuzzy subsets over C, a maping $F: C \rightarrow \mathscr{F}(C)$ is called fuzzy mapping over C, let $A \in \mathscr{F}(C)$, $Q \in [0,1]$, set $(A)_Q = \{u \mid A(u) \geqslant Q, u \in C\}$ is called the Q-cut set of A.

DEFINITION 1.1 Let $F: C \to \mathcal{F}(C)$ be a fuzzy mapping, if $P \in C$ such that $Fp(p) = \max_{u \in C} Fp(u)$, then p is called a fixed point of F.

DEFINITION 1.2 Let $F: C \to \mathcal{F}(C)$ be a fuzzy mapping, if for any $\lambda \in [0,1]$ and any $y,z \in C$, it is true that

$$Fx(\lambda y + (1 - \lambda)z) \geqslant \min\{Fx(y), Fx(z)\}$$

then F over C is called convex.

DEFINITION 1.3 Let $F:C \to \mathcal{F}(C)$ be a fuzzy mapping, if the membership function Fx(y) is upper semi—continuous over $C \times C$ (as a real ordinary function), then F over C is called closed.

DEFINITION 1. 4 Let $F: C \to \mathscr{F}(C)$, $O(x): C \to [0,1]$, $\forall x \in C$, $\widetilde{F}x = (Fx)_{O(x)} = \{u | Fx(u) \geqslant O(x), u \in C\} \subseteq C$, $\widetilde{F}: C \to 2^{C}$ is a set—valued mapping, $\forall D \subseteq C$, $\widetilde{F}(D) = \bigcup_{x \in D} \widetilde{F}x$, let $x_0 \in C$, $D_0 = \{x_0\}$, $D_1 = conv(\{x_0\} \cup \widetilde{F}(x_0), D_{n+1} = conv(\{x_0\} \cup \widetilde{F}(D_n)), n > 0$, $\therefore D_0 \subseteq D_1 \subseteq D_2 \subseteq \cdots \subseteq D_n \subseteq D_{n+1} \subseteq \cdots$, $\therefore V = \bigcup_{n \geqslant 0} D_n = \bigcup_{n \geqslant 0} D_{n+1} = \bigcup_{n \geqslant 0} conv(\{x_0\} \cup \widetilde{F}(X_n)) = conv(\{x_0\} \cup \widetilde{F}(X_n))$, V is called the set induced by \widetilde{F} and X_0 .

LEMMA 1.5 (K_Y Fan [1][3]) Let X be a real topological vector space which is locally convex and Hausdorff. Let C be a nonempty, compact and convex subset of X and $T:C \to 2^C$ a set—valued mapping having the following properties:

- (1) for any x in C the set Tx is convex, compact and nonempty
 - (2) the set graph $T = \bigcup_{x \in C} \{(x,y), y \in Tx\}$ is a closed set in $X \times X$.

Then there exists a fixed point p of T, i. e. $p \in Tp$

LEMMA 1. 6 Let X be a Hausdorff topological space, C be a nonempty, compact and convex subset of X, $T:C \to 2^c$ be a set—valued mapping such that $\forall x \in C$, set Tx is compact, if $T:C \to 2^c$ is upper semi—continuous, then set graph $T = \bigcup_{x \in C} \{(x,y), y \in Tx\}$ is a closed set in $X \times X$.

Proof. Let $x_K \to x_0$, $y_K \in Tx_K$, $y_K \to y_0$, we shall show that $y_0 \in Tx_0$. If $y_0 \notin Tx_0$, by X be a Hausdorff topological space, $\forall y \in Tx_0$, there exists a neighbourhood of $y Wy \subseteq X$, & a neighbourhood of $y_0 Vy \subseteq X$, $Wy \cap Vy = \emptyset$, $Tx_0 \subseteq \bigcup_{y \in Tx_0} \{Wy \mid y \in Tx_0\}$, by set Tx_0 is compact, there exits $y_1, y_2, \dots, y_n \in Tx_0$, such that $Tx_0 \subseteq \bigcup_{i=1}^n Wy_i = W$. Let $V = \bigcap_{i=1}^n Vy_i$,

V is a neighbourhood of y_0 , such that $W \cap V = \emptyset$, by $T: C \to 2^C$ is upper semi—continuous, there exists a neighbourhood of $x_0 \cup$ such that $\forall x_K \in U$, $Tx_K \subset W$, thus $y_K \in W$, moreover $W \cap V = \emptyset$, $y_K \to y_0$, this is a contradiction, thus $y_0 \in Tx_0$. By $y_0 \in Tx_0$, thus graph T is a closed.

2 MAIN RESULTS

THEOREM 2. 1 Let X be a real topological vector space which is locally convex and Hausdorff, C is a nonempty closed convex subset of X, $F:C \to \mathcal{F}(C)$ is a closed convex fuzzy mapping over C.

- (1) Suppose that there exists a lower semi—continuous function $O(x): C \to (0,1]$ such that $\forall x \in C$, $\widetilde{F}x = (Fx)_{O(x)} \neq \emptyset$, there exists $x_0 \in C$ such that the set V induced by \widetilde{F} and x_0 is a compact subset of C, then there exists $p \in C$ such that $Fp(p) \geqslant O(p)$;
- (2) If $O(x) = \max_{u \in C} Fx(u) : C \to (0,1]$ such that $\forall x \in C$, $\widetilde{F}x = (Fx)_{O(x)} \neq \emptyset$, moveover for any $y \in C$, Fx(y) as a function of $x \in C$ is lower semi—continuous, there exists $x_0 \in C$ such that set V induced by \widetilde{F} and x_0 is a compet subset of C, then there exists a point $p \in C$ such that $Fp(p) = \max_{u \in C} Fp(u)$, i. e. p is a fixed point of F.

Proof. Let $\widetilde{F}x = (Fx)_{O(x)} = \{u \mid Fx(u) \geqslant O(x), u \in C\}$, then $\widetilde{F}: C \rightarrow 2^C$, the set V induced by \widetilde{F} and x_0 is a compact subset of $C, V = conv(\{x_0\}) \cup \widetilde{F}(V)$ $\forall x \in V, \widetilde{F}x \subseteq V$. First, we prove that for each $x \in V, \widetilde{F}x$ is a nonempty convex compact set of V.

 $\forall x \in V \subseteq C$, $\widetilde{F}x = (Fx)_{O(x)} \neq \emptyset$, if $\forall y,z \in \widetilde{F}x$, $\lambda \in [0,1]$ by $F:C \to \mathscr{F}(c)$ is a convex fuzzy mapping over C, $Fx(\lambda y + (1-\lambda)z) \geqslant \min\{F_x(y), Fx(z)\} \geqslant O(x)$, $\therefore \lambda y + (1-\lambda)z \in (Fx)_{O(x)} = \widetilde{F}x$, $\widetilde{F}x$ is a convex set. Let $\{y_j\}_{j \in I} \subseteq \widetilde{F}x$ and $y_j \to y_0 \in V \subseteq C$, thus $(x,y_j) \to (x,y_0)$ moreover $Fx(y_j) \geqslant O(x)$ by $F:C \to \mathscr{F}(C)$ is a closed fuzzy mapping, Fx(y), as a function over $C \times C$, is upper semi—continuous.

This leads to the conclusion that $Fx(y_0) \geqslant \overline{\lim}_{j \in I} Fx(y_j) \geqslant O(x)$, $\therefore y_0 \in (Fx)_{O(x)} = \widetilde{F}x$, $\widetilde{F}x$ is a closed subset of V, by $\widetilde{F}x \subseteq V$, V is compact set,

 $\therefore \widetilde{F}x$ is a compact set.

Next, we prove that set graph $\widetilde{F} = \bigcup_{x \in V} \{(x,y) \mid y \in \widetilde{F}x\}$ is a closed subset in $X \times X$. Let $\{(x_j,y_j)\}_{j \in I}$ is a net of graph \widetilde{F} , and $x_j \to x_0 \in V$, $y_j \to y_0 \in V$, by F is closed and $O(x):C \to (0,1]$ is lower semi—continuous, we have $Fx_0(y_0) \geqslant \overline{\lim_j} Fx_j(y_j) \geqslant \overline{\lim_j} O(x_j) \geqslant \underline{\lim_j} O(x_j) \geqslant O(x_0)$, $\therefore y_0 \in (Fx_0)_{O(x_0)} = \widetilde{F}x_0$, $(x_0,y_0) \in \operatorname{graph} \widetilde{F}$, graph \widetilde{F} is closed in $X \times X$.

For $\widetilde{F}: V \to 2^V$ applying lemma 1.5 (Ky Fan [1],[3]) there exists $p \in C$ such that $p \in \widetilde{F}p = (Fp)_{O(p)}$, i. e. $Fp(p) \geqslant O(p)$.

When $O(x) = \max_{u \in C} Fx(u) : C \to (0,1]$ such that the conditions in (2)., by the same way we can prove that for $\forall x \in V$, $\widetilde{F}x$ is a nonempty convex compact set, now we prove the set graph \widetilde{F} is closed in $X \times X$. Let $\{(x_j, y_j)\}_{j \in I}$ is a net of graph \widetilde{F} , $y_j \in \widetilde{F}x_j$, and $x_j \to x_0 \in V$, $y_j \to y_0 \in V$, $(x_j, y_j) \to (x_0, y_0) \in V \times V$, by F is closed and for any $y \in C$, Fx(y) as a function of $x \in C$ is lower semi—continuous, we have: $Fx_0(y_0) \geqslant \lim_{j \to \infty} Fx_j(y_j) \geqslant \lim_{j \to \infty} O(x_j) \geqslant \lim_{j \to \infty} Fx_j(u) \geqslant$

Let $T: C \to 2^C$ is a set—valued mapping, by using T we define a fuzzy mapping F as follows: $F: C \to \mathcal{F}(C)$, $x \to \mathcal{X}_{Tx}$, where \mathcal{X}_{Tx} is the characteritic function of Tx, Taking $O(x) \equiv 1$, $\forall x \in C$ it is easy to prove that when $\forall x \in C$, Tx is a convex closed subset of C, $F: C \to \mathcal{F}(C)$ is a convex closed fuzzy mapping. Thus we have:

COROLLARY 2. 2 Let X, C satisfy the condition of Theorem 2. 1. Let $T: C \to 2^C$ is a set—valued mapping such that $\forall x \in C$, Tx is a nonempty convex closed subset of C, and there exists $x_0 \in C$ the set V induced by T and x_0 is a compact subset of C. If set graph T is closed in X $\times X$, then there exists $p \in C$ such that $p \in Tp$.

COROLLARY 2.3 Let X, C, T satisfy the conditions of corollary 2.1. If $T: C \to 2^c$ is upper semi—continuous, then there exists $p \in C$ such that $p \in Tp$.

Proof for $T: C \to 2^c$ applying lemma 1.6, by $T: C \to 2^c$ is upper semi—continuous, we have set graph T is closed in $X \times X$.

REMARK by corollary 2. 2 and 2. 3, it is easy to see that Theorem 2. 1 improves and generalizes Ky Fan's fixed point and corresponding important results of [1,2,3,4,5]

REFERENCES

- [1] Ky Fan, Fixed point and minimax theorem in locally conver topological linear spaces, Proc. Math. Acad. Sci. USA 38 (1952) 121-126.
- [2] D. Butnariu, Fixed points for fuzzy mappings, Fuzzy Sets and Systems 7(1982) 191-207
- [3] Chang S. S., Fixed degree for fuzzy mappings and a generalization of Ky Fan's theorem, Fuzzy Sets and Systems 24(1987) 103—112
- [4] Shi Chuan, Fixed point theorems on several class fuzzy mappings, Journal of Nanjing Univ. of Sci. and Tech., Vol. 20 No. 1 (1996) 79-92
- [5] S. Krzyska and I. Kubiaczyk, Fixed point theorems for upper semicontinuous and weakly weakly upper semicontinuous multivalued mappings, Math. Japonica 47, No. 2 (1998), 237—240