Fuzzy Factor Algebras

Leng Xuebin

Department of Mathematics, Liaocheng Teacher's College, Shandong 252059, People's Republic of china.

Abstract: In this paper, we will define the concept of fuzzy factor algebras, and prove the isomorphism theorem of fuzzy algebras.

Keywords: fuzzy algebra; fuzzy ideal, isomorphism.

1. Preliminaries

Let X be any set, A fuzzy set A in X is characterized by a mapping A: $X \rightarrow [0,1]$.

Definition 1.1. Let Y be an algebra over field K, and A a fuzzy subset of Y. The A is called a fuzzy algebra of Y if

- 1) A $(\lambda_1 x + \lambda_2 y) > \inf \{A(x), A(y)\}$
- 2) $A(xy) > \inf \{A(x), A(y)\}$

for all $x, y \in Y$ and $\lambda_1, \lambda_2 \in K$.

In following, if we speak of algebra Y, we always mean the algebra over field K.

Definition 1.2. Let B be a fuzzy algebra of algebra Y, if B(xy) > B(x)VB(y), for all $x, y \in Y$, then B is called a fuzzy ideal of Y.

Definition 1.3. Let B be a fuzzy ideal of Y, the fuzzy subset x+B

of Y is defined as follows: (x+B)y=B(x-y) for all $y \in Y$.

Definition 1.4. Let B be a fuzzy ideal of Y, $Y/B = \{x+B \mid x \in Y\}$. The operation "+", "•" and scalar product on B/I are defined as follows:

$$(x+B) + (y+B) = x+y+B$$
$$(x+B)(y+B) = xy+B$$
$$\lambda (x+B) = \lambda x+B$$

We can easily prove the Definition 1.4 to be fine definitions.

Proposition 1.5. Let B be a fuzzy ideal of algebra Y, then B/I is an algebra over field K.

Proof. The proof is very easy, and hence omitted.

Proposition 1.6. Let B be a fuzzy ideal of the algebra Y, and $G_{\mathbf{B}} = \{x \mid x \in Y, B(x) = B(0)\}$, then $G_{\mathbf{B}}$ is an ideal of Y, and $Y/G_{\mathbf{B}} \not \subseteq Y/B$.

2. Fuzzy factor algebras

Let Y be an algebra over field K, A a fuzzy subalgebra of Y, B a fuzzy ideal of Y. We define a fuzzy set A/B of Y/B as follows:

A/B:
$$Y/B \rightarrow [0,1]$$

and

$$A/B(x+B) = \sup_{y+B=x+B} A(y)$$

Proposition 2.1. A/B is a fuzzy subalgebra of Y/B.

Proof. For all x, y \in Y, λ_1 , λ_2 \in K, we have

$$A/B(\lambda_{1}(x+B) + \lambda_{2}(y+B)) = A/B(\lambda_{1}x + \lambda_{2}y + B)$$

$$= \sup_{z=\lambda_{1}x + \lambda_{2}y} A(z_{1} + z_{2})$$

$$z=\lambda_{1}x + \lambda_{2}y z_{1} = \lambda_{1}x$$

$$z=\lambda_{2}x$$

$$> \sup_{z_{1}=\lambda_{1}X} \inf(A(z_{1}), A(z_{2}))$$

$$z_{1}=\lambda_{1}X z_{2} = \lambda_{2}y$$

$$= \inf_{z_{1}=\lambda_{1}X} A(z_{1}), \sup_{z_{2}=\lambda_{2}y} A(z_{2})$$

$$> \inf_{z_{1}=\lambda_{1}X} A(z_{1}), \sup_{z_{2}=\lambda_{2}y} A(z_{2})$$

$$> \inf_{z_{1}=\lambda_{1}X} A(x_{1}), A(\lambda_{2}y)$$

$$> \inf_{z_{1}=\lambda_{1}X} A(x_{1}), A(y_{1})$$

$$> \inf_{z_{1}+B=x+B} A(x_{1}), \sum_{z_{1}+B=x+B} A(x_{1}), A(y_{1})$$

$$x_{1}+B=x+B \sum_{y_{1}+B=y+B} A(x_{1}), \sup_{z_{1}+B=y+B} A(y_{1})$$

$$= \inf_{z_{1}+B=x+B} \{\sup_{y_{1}+B=y+B} A(x_{1}), \sup_{z_{1}+B=y+B} A(y_{1})\}$$

$$= \inf_{z_{1}+B=x+B} \{A/B(x+B), A/B(y+B)\}$$

Hence, A/B is a fuzzy subalgebra of Y/B.

Definition2.2. We call A/B the fuzzy factor algebra of A about B.

Definition 2.3. Let Y, Y' be general sets, $f: Y \rightarrow Y'$ a surjective mapping, and A a fuzzy set of Y. If f(x) = f(y) follows A(x) = A(y), then A is called f-invariant.

Definition 2.4. Let $f: Y \to Y'$ be an algebra homomorphism (isomorphism), A and A' fuzzy algebral of Y and Y', respectively If f(A) = A', then we say A is homomorphic (isomorphic) to A', which is denoted as $A \sim A'$ ($A \cong A'$).

Definition 2.5. Let Y, A and B be as above, then $A \sim A/B$.

Proof Let $g: A \rightarrow A/B$ as g(x) = x + B for all $x \in Y$. Then we have

$$g(\lambda_1 x + \lambda_2 y) = \lambda_1 x + \lambda_2 y + B = \lambda_1 (x + B) + \lambda_2 (y + B)$$
$$= \lambda_1 g(x) + \lambda_2 g(y)$$
$$g(xy) = xy + B = (x + B)(y + B) = g(x)g(y)$$

for all x, y \in Y. Thus g is a ring homomorphism:

$$A/B(x+B) = \sup_{y+B=x+B} A(y) = \sup_{B(y)=x+B} A(y) = g(A)(x+B)$$
Hence $A \sim A/B$.

Here g is called the natural homomorphism.

Proposition 2.6. Let f be an algebra homomorphism from algebra Y onto algebra Y', A the fuzzy subalgebra of Y and I the ideal of Y. If $G_{\mathbf{B}} \subset \ker f$, then $A/B \sim f(A)$.

Proof. Let $g: Y/B \rightarrow Y'$, g(x+B) = f(x), for all $x+B \in Y/B$. If $x \neq y$, x + B = y + B, then B(x-y) = B(0), $x-y \in G_B \subset \ker f$, f(x) = f(x-y+y) = f(x-y) + f(y) = f(y). Thus g is a mapping.

For all
$$x+B$$
, $y+B \in Y/B$, λ_1 , $\lambda_2 \in F$

$$g(\lambda_1(x+B) + \lambda_2(y+B)) = g(\lambda_1x + \lambda_2y + B)$$

$$= f(\lambda_1x + \lambda_2y)$$

$$= \lambda_1f(x) + \lambda_2f(y)$$

$$= \lambda_1g(x+B) + \lambda_2g(y+B)$$

$$g((x+B)(y+B)) = g(xy+B)$$

$$= f(xy)$$

$$= f(x)f(y)$$

$$= g(x+B)g(y+B)$$

Thus, g is an algebra homomorphism. For all $x' \in Y'$,

$$g(A/B)(x') = \sup_{g(x+B)=x'} A/B(x) = \sup_{f(x)=x'} A(y)$$

= $\sup_{f(y)=x'} A(y) = f(A)(x')$

Hence $A/B \sim f(A)$.

By proposition 1.6, 2.5, 2.6 we have the following theorem.

Theorem 2.7. Let $f: Y \to Y'$ be an algebra homomorphism, A a fuzzy algebra of Y, B a fuzzy ideal of Y and $G_B = \ker f$; then $A/B \cong f(A)$.

Proposition 2.8. Let $f: Y \to Y'$ be an algebra homomorphism, B a fuzzy ideal of Y and B be f-invariant. Then $Y/B \cong Y'/f(B)$.

Proof Let g: $Y/B \rightarrow Y'/f(B)$ and g(x+B) = f(x) + f(B)

we can easily prove that g is isomorphism from Y/B onto Y'/f(B) so $Y/B \cong Y'/f(B)$.

Theorem 2.9 Let $f: Y \to Y'$ be an algebra homomorphism, A a fuzzy algebra of Y and B a fuzzy ideal of Y. If B is f-invariant, then $A/B \mathfrak{L}(A)/f(B)$.

Proof. We have the following diagram

$$Y \rightarrow Y' \rightarrow Y'/f(B)$$

 $A \rightarrow f(A) \rightarrow f(A)/f(B)$

It is clear f(A)/f(B) = g(f(A)), and g is the natural homomorphism. By Theorem 2.7. We need only to prove $ker(gf) = G_B$. It is clear B(0) = f(B)(0') For all $x \in G_B$, B(x) = B(0):

$$f(B)(f(x)) = \sup_{f(y)=f(x)} B(y) = B(0) = f(B)(0')$$

Hence, f(x)f(B) = f(B), $x \in \ker(gf)$. For all $x \in \ker(gf)$, (gf)(x) = f(B), f(x)f(B) = f(B), f(B)(f(x)) = f(B)(0) = B(0), $\sup_{f(y) = f(x)} B(y) = B(0)$.

Since B is f-invariant, we have f(x) = f(y) following B(x) = B(y). Hence B(x) = B(0), $x \in G_B$. Thus $G_B = \ker(gf)$.

Reference

[1]Chen De-Gang, Li Su-Yun, Fuzzy factor rings, Fuzzy Sets and Systens 94(1998) 125-127.

[2]Zhao Jianli, Shi Kaiquan, ON FUZZY ALGEBRAS OVER FUZZY FIELDS, PROCEEDINGS OF SCI'94, Volume 1,346-350, Huazhong University of Science and Technology Press.