THE IMPORTANT PROPERTIES OF FUZZY ALGEBRA OVER FUZZY FIELDS

Qiao Bingwu

(Department of Computer Science, Liaocheng Teachers' University, Shandong ,252059,P.R.China.)

ABSTRACT

We'll discuss in this paper, decomposition theorem . characteristic depiction and some other important properties of fuzzy algebra over fuzzy fields.

Keywords: Fuzzy fields, fuzzy algebra over fuzzy fields, decomposition theorem, characteristic depiction

1 PREEELIMINARY

Let X be any not empty set and let L be a complete distributive lattice in which there could be 0 and 1. Then a fuzzy subset A to X is characterized by a map $A: X \to L$, $A_{\alpha} = \{x \in X \mid A(x) \ge \alpha\}$, here $\alpha \in L$, A_{α} could be a α —level cut of A. When $\alpha \in A$, if $\alpha \le \beta$, then $A_{\alpha} \ge A_{\beta}$. F could be a fuzzy subset of X, F_{α} is a α —level cut of F as well. Let X be an ordinary field, in this paper, F refers to the fuzzy field of X, Y refers to algebra over field X.

In the following passages we will define the fuzzy algebra over fuzzy field.

Definition 1.1 Let Y be algebra over field X and let A be a fuzzy subset of Y, F be a fuzzy field of X, if $\forall x, y \in Y$ and $\lambda \in X$,

- (i) $A(x+y) \ge A(x) \land A(y)$;
- (ii) $A(x \cdot y) \ge A(x) \land A(y)$;
- (iii) $A(\lambda x) \ge F(\lambda) \wedge A(x);$
- (iv) $A(x) \ge A(-x)$;
- (v) A(0)=1.

Then A is could a fuzzy algebra over fuzzy field F of Y.

Due to the definition 1.1, we can easily draw the following conclusions.

Proposition 1.1 Suppose A is a fuzzy algebra over fuzzy field F of Y, then the following conclusions hold.

- (i) $\forall x \in Y, A(x) = A(-x);$
- (ii) $\forall x, y \in Y, A(x-y) \ge A(x) \land A(y);$
- (iii) $\forall x, y \in Y$, if $A(x) \le A(y)$, then $A(x+y) \land A(y) = A(x)$;
- (iv) $\forall x, y \in Y$, if $A(x) \le A(y)$, then $A(x \cdot y) \land A(y) = A(x)$;
- (v) $\forall x \in Y \text{ and } \lambda \in X, \text{ if } A(x) \leq F(\lambda), \text{ then } A(\lambda x) \wedge A(x) = A(x).$

In fact, (i) and (iv) in definition 1.1 is equal to (ii) in Proposition 1.1.

2 IMPORTANT PROPERTIES

According to the former definition and proposition, we prove decomposition theorem, characteristic and some other important properties of fuzzy algebra over fuzzy fields.

Theorem 2.1 Let F be a subset of X, and A be a fuzzy subset of Y, then A is a fuzzy algebra over fuzzy field F of Y iif $\forall \alpha \in L$, A_{α} is a subspace of Y, in particular when F_{α} is not empty, A_{α} is an algebra over field F_{α} .

Proof. Necessity: $\forall \alpha \in L$, due to the fuzzy algebra and the fuzzy space theory, easily let A_{α} be a subspace of Y and F_{α} be a subfield of X, when F_{α} is not empty. Then $\forall x,y \in A_{\alpha}$, $\lambda \in F_{\alpha}$, $A(x) \geq \alpha$, $A(y) \geq \alpha$, $F(\lambda) \geq \alpha$. Because A is a fuzzy algebra over fuzzy field F of Y, then

- (i) $A(x+y) \ge A(x) \land A(y) \ge \alpha$;
- (ii) $A(x \cdot y) \ge A(x) \wedge A(y) \ge \alpha$;
- (iii) $A(\lambda x) \ge F(\lambda) \land A(x) \ge \alpha$.

Therefore A_{α} is an algebra over field F_{α} .

Sufficiency: $\forall x, y \in Y, \lambda \in X$, Let $\alpha = A(x) \land A(y)$, $\beta = F(\lambda) \land A(x)$, due to A_{α} and A_{β} are both subspaces of Y. Respectfully, A_{α} and A_{β} are algebras over fields F_{α} and F_{β} , when F_{α} and F_{β} are not empty. Therefore, $x+y \in A_{\alpha}, x \cdot y \in A_{\alpha}, \lambda x \in A_{\beta}$, and

- (i) $A(x+y) \ge \alpha = A(x) \land A(y)$;
- (ii) $A(x \cdot y) \ge \alpha = A(x) \land A(y)$:
- (iii) $A(\lambda x) \ge \beta = F(\lambda) \land A(x)$,

Easily to prove: A(0)=1, A(x)=A(-x), therefore A is a fuzzy algebra over fuzzy field F of Y.

Theorem 2.2 Let L be a complete distributive lattice, fuzzy subset A of Y is fuzzy algebra over fuzzy field F iif there is a subfield family $\{X_{\alpha}|\alpha\in L,\ X_{\alpha} \text{ is a subfield of } X,\bigcap_{\alpha\in H\atop H\subset I}X_{\alpha}\subseteq X_{\text{supp}H}\}$, and a subalgebra family $\{Y_{\alpha}|\alpha\in L,Y_{\alpha} \text{ is a subalgebra family } \{Y_{\alpha}|\alpha\in L,Y_{\alpha} \text{ is a subalgebra family } \{X_{\alpha}|\alpha\in L,Y_{\alpha} \text{ is a subalgebra family } \{X_{\alpha}|\alpha\in L,Y_{\alpha} \text{ is a subalgebra family } \{X_{\alpha}|\alpha\in L,X_{\alpha} \text{ is a subalgebra fami$

subset of Y, $\bigcap_{\substack{\alpha \in H \\ H \subseteq I}} Y_{\alpha} \subseteq Y_{\text{supp}H}$, such that Y_{α} is a subspace of Y. In particular, when

 $\alpha \le \sup_{\alpha \in L} p(X)$, Y_{α} is an algebra over field X_{α} , and $F = \bigcup_{\alpha \in L} \alpha \cdot X_{\alpha}$, $A = \bigcup_{\alpha \in L} \alpha \cdot Y_{\alpha}$, X_{α} and

 Y_{α} respectively indicate characteristic functions of X_{α} and Y_{α} .

Proof. Necessity: Due to decomposition theorem of fuzzy subset, we can conclude $F = \bigcup_{\alpha \in L} \alpha \cdot \tilde{F}_{\alpha}$, $A = \bigcup_{\alpha \in L} \alpha \cdot \tilde{A}_{\alpha}$. Here \tilde{F}_{α} and \tilde{A}_{α} respectively indicate characteristic functions of F_{α} and A_{α} , due to definition 1.1, we have: $\forall \alpha \in [0, \operatorname{supp} F(\lambda)]$, A_{α} is a subspace of Y, and A_{α} is an algebra over field F_{α} when F_{α} is not empty. We easily obtain: $\bigcap_{\alpha \in H \atop H \in L} X_{\alpha} = X_{\operatorname{supp} H}, \bigcap_{\alpha \in H \atop H \in L} Y_{\alpha} \subseteq Y_{\operatorname{supp} H}$. Here

 $X_{\alpha} = F_{\alpha}$, $Y_{\alpha} = A_{\alpha}$, now necessity holds.

Sufficiency: Let $F = \bigcup_{\alpha \in L} \alpha \cdot \chi_{\alpha}$, $A = \bigcup_{\alpha \in L} \alpha \cdot Y_{\alpha}$, and A_{α} is a subspace of Y, when $\alpha \in L$, in particular, when $\alpha \le \sup_{\alpha \in L} p(\lambda)$, Y_{α} is an algebra over field X_{α} . $\forall x \in Y$, if x is not any a subset family $\{Y_{\alpha} | \alpha \in L\}$, then A(x) = 0. If $x \in Y_{\alpha}$, $A(x) = \bigcup_{x \in Y_{\alpha}} \alpha$, therefore $A(x) = \bigcup_{x \in Y_{\alpha}} \alpha$ when supposed empty set $x \in X$ supreme is $x \in X$. So $x \in X$, if $x \in X$ if

Because $Y_{\mu} \cap Y_{\mu \wedge \nu} = Y_{\mu}, Y_{\nu} \cap Y_{\mu \wedge \nu} = Y_{\nu}, Y_{\nu} \subseteq Y_{\mu \wedge \nu}, Y_{\mu} \subseteq Y_{\mu \wedge \nu}$, thus $\forall x, y \in Y_{\mu \wedge \nu}$, have $x - y \in Y_{\mu \wedge \nu}$, so we have $A(x - y) = \vee [\alpha \wedge \tilde{Y}_{\alpha}(x - y)] \ge (\mu \wedge \nu) \wedge Y_{\mu \wedge \nu}(x - y) = \mu \wedge \nu$, that is $A(x - y) \ge A(x) \wedge A(y)$; $A(x \cdot y) = \vee [\alpha \wedge \tilde{Y}_{\alpha}(x \cdot y)] \ge (\mu \wedge \nu) \wedge Y_{\mu \wedge \nu}(x \cdot y) = \mu \wedge \nu$, that is $A(x \cdot y) \ge A(x) \wedge A(y)$.

Secondly, $\forall x \in Y, \lambda \in X$, if $F(\lambda) = \bigcup_{\lambda \in X_{\alpha}} \alpha$, $A(x) = \bigcup_{x \in Y_{\beta}} \beta$, let $F(\lambda) = \delta$, $A(x) = \epsilon$. Then because $\lambda \in \bigcap_{\lambda \in X_{\alpha}} X_{\alpha} = X \bigvee_{\lambda \in X_{\alpha}} \alpha = X_{\delta}, x \in \bigcap_{x \in Y_{\beta}} Y_{\beta} = Y \bigvee_{y \in Y_{\beta}} \beta = Y \epsilon$. Because $X_{\delta} \subseteq X_{\delta} \wedge \epsilon$, $Y \in \subseteq Y_{\delta} \wedge \epsilon$, but $Y_{\delta} \wedge \epsilon$ is an algebra of $X_{\delta} \wedge \epsilon$, hence $\lambda x \in Y_{\delta} \wedge \epsilon$ and $A(\lambda x) = \sqrt{[\alpha \wedge Y_{\alpha}(\lambda x)]} \geq (\delta \wedge \epsilon) \wedge Y_{\delta} \wedge \epsilon(\lambda x) = \delta \wedge \epsilon$, that is $A(\lambda x) \geq F(\lambda) \wedge A(x)$.

We also have $A(0) = \bigcup_{\alpha \in L} \alpha = 1$, so A is a fuzzy algebra over fuzzy field F of Y. That is sufficiency holds.

Definition 2.1. Let Y be an algebra over field X, F be fuzzy field of X, A and B are fuzzy subsets of $Y, \lambda \in X$, define $A \cap B, A + B, A \cdot B, \lambda A, -A$ respectively is the following fuzzy subset of $Y \cdot \forall x \in Y$

$$(A \cap B)(x) = A(x) \wedge B(x); \qquad (A+B)(x) = \bigcup_{x_1 + x_2 = x} [A(x_1) \wedge B(x_2)];$$

$$(A \cdot B)(x) = \bigcup_{x_1 \cdot x_2 = x} [A(x_1) \wedge B(x_2)]; \quad (\lambda A)(x) = \bigcup_{\lambda x_1 = x} [F(\lambda) \wedge A(x_1)];$$

$$(-A)(x) = A(-x).$$

Theorem 2.3 If L is a complete distributive lattice, then the intersection $\{A^k\}_{k\in I}$ of fuzzy algebra over fuzzy field F of Y is fuzzy algebra over fuzzy field F of Y; when I is a finitely set, $\forall \alpha \in L, (\bigcap_{k \in I} A^k)_{\alpha} = \bigcap_{k \in I} A^k_{\alpha}$.

Proof: $\forall x, y \in Y, \lambda \in X$. $(\bigcap_{k \in I} A^k)(x-y) = \bigwedge_{k \in I} A^k(x-y) \ge \bigwedge_{k \in I} (A^k(x) \land A^k(y))$ $= (\bigwedge_{k \in I} A^k(x)) \land (\bigwedge_{k \in I} A^k(y))$ $= (\bigcap_{k \in I} A^k(x)) \land (\bigcap_{k \in I} A^k(y))$ $(\bigcap_{k \in I} A^k)(x \cdot y) = \bigwedge_{k \in I} A^k(x \cdot y) \ge \bigwedge_{k \in I} (A^k(x) \land A^k(y))$

$$= (\bigwedge_{k \in I} A^{k}(x)) \wedge (\bigwedge_{k \in I} A^{k}(y))$$

$$= (\bigcap_{k \in I} A^{k}(x)) \wedge (\bigcap_{k \in I} A^{k}(y))$$

$$(\bigcap_{k \in I} A^{k})(\lambda x) = \bigwedge_{k \in I} A^{k}(\lambda x) \geq \bigwedge_{k \in I} (F(\lambda) \wedge A^{k}(x))$$

$$= F(\lambda) \wedge (\bigwedge_{k \in I} A^{k}(x))$$

$$= F(\lambda) \wedge (\bigcap_{k \in I} A^{k}(x))$$

$$\left(\bigcap_{k\in I}A^{k}\right)(0)=\bigwedge_{k\in I}A^{k}(0)=1$$

So $\bigcap_{k \in I} A^k$ is fuzzy algebra over fuzzy field F of Y.

Secondly, when I is a finitely set, $\forall \alpha \in L, x \in \bigcap_{k \in I} A^k_{\alpha}$, then $\forall k \in I, A^k_{\alpha}(x) \ge \alpha$, that is $\bigcap_{k \in I} A^k(x) \ge \alpha$, $x \in (\bigcap_{k \in I} A^k)_{\alpha}$, due to x's wantonness, we obtain $\bigcap_{k \in I} A^k_{\alpha} \subseteq (\bigcap_{k \in I} A^k)_{\alpha}$.

Conversely, $x \in (\bigcap_{k \in I} A^k)_{\alpha}$, that is $(\bigcap_{k \in I} A^k)_{\alpha} \ge \alpha$, so $\bigcap_{k \in I} A^k(x) \ge \alpha$, then $\forall k \in I$, $A^k(x) \ge \alpha$, so $\forall k \in I$, $x \in A^k_{\alpha}$, due to x's wantonness, we obtain $(\bigcap_{k \in I} A^k)_{\alpha} \subseteq \bigcap_{k \in I} A^k_{\alpha}$.

So
$$(\bigcap_{k \in I} A^k)_{\alpha} = \bigcap_{k \in I} A^k_{\alpha}$$
.

Definition 2.4. Algebra Y's fuzzy subset A is fuzzy algebra over fuzzy field F iif

- $(i) \quad \bigvee_{x \in Y} A(x) = 1;$
- (ii) $A + A \subseteq A$, $A \cdot A \subseteq A$, $\forall \lambda \in X, \lambda A \subseteq A$, $A \subseteq A$.

Proof. Necessity: If A is fuzzy algebra subset over field F of Y, then A(0)=1, so $\bigvee_{x\in Y} A(x)=1$, that is (i) holds.

Further $\forall x \in Y$, $(A+A)(x) = \bigcup_{x_1+x_2=x} [A(x_1) \land A(x_2)]$, because A is fuzzy algebra over field F of Y, so

$$A(x_1+x_2) \ge A(x_1) \land A(x_2),$$

$$(A+A)(x) = \bigcup_{x_1+x_2=x} [A(x_1) \land A(x_2)] \le \bigcup_{x_1+x_2=x} A(x_1+x_2),$$

then $A + A \subset A$.

Seminally $A \cdot A \subseteq A$.

Also $\forall \lambda \in X$, $x \in Y$, $\lambda A(x) = \bigcup_{\lambda x_1 = x} [F(\lambda) \wedge A(x_1)]$, because A is fuzzy algebra

over field F of Y, so $A(\lambda x) \ge F(\lambda) \land A(x)$, furthermore we have $\lambda A(x) = \bigcup_{\lambda x_1 = x} [F(\lambda) \land A(x_1)] \le \bigcup_{\lambda x_1 = x} A(\lambda x_1) = A(x), \text{ that is } \lambda A \subseteq A.$

Similarly $-A \subset A$.

Sufficiency: $\forall x, y \in Y, \lambda \in X$, because $A + A \subseteq A$, $A \cdot A \subseteq A, \forall \lambda \in X, \lambda A \subseteq A$, $-A \subseteq A$, we have

$$A(x+y) \geq (A+A)(x+y) = \bigvee_{x_1+y_1=x+y} (A(x_1) \wedge A(y_1)) \geq A(x) \wedge A(y);$$

$$A(x \cdot y) \geq (A \cdot A)(x+y) = \bigvee_{x_1 \cdot y_1=x \cdot y} (A(x_1) \wedge A(y_1)) \geq A(x) \wedge A(y);$$

$$A(\lambda x) \geq (\lambda A)(\lambda x) = \bigvee_{\lambda x_1=\lambda x} (F(\lambda) \wedge A(x_1)) \geq F(\lambda) \wedge (\bigvee_{\lambda x_1=\lambda x} A(x_1))$$

$$= F(\lambda) \wedge A(x);$$

$$A(-x) \geq (-A)(-x) = A(x).$$

Also because $\forall x \in Y$, 0=x+(-x), we have $A(0)=A(x+(-x)) \ge A(x) \land A(-x)$, so $A(0) \ge \bigvee_{x \in Y} A(x) = 1$, that is A(0)=1.

We can conclude A is fuzzy algebra over field F of Y.

Due to theorem 2.4, we easily prove the following theorem.

Theorem 2.5. If A and B are fuzzy algebras over field F of Y, then A+B is also fuzzy algebra over field F of Y.

3 REFERENCES

- (1) Sudarsan NANDA. Algebras over fuzzy fields. Fuzzy Sets and Systems, 37(1990)99~103.
- (2) Liu Wang Jin. Operations on fuzzy ideals. Fuzzy Sets and Systems, 11(1983)31~41.
- (3) S.Nanda. Fuzzy fields and fuzzy linear spaces. Fuzzy Sets and Systems, 19(1986)89~94.
- (4) L. A. Zadeh. Fuzzy sets. Inform and Cotrol.1965,8:338~353.