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Abstract — It is well known that the Fuzzy Centrol and Network
of Neurons play important roles in Artificial Intelligence and
Intelligent Control. The Control procedure is often represented
by language rules that different from the classical control. The
classical stability theory is useless here. The stability of
intelligent control is still an open problem. The key to discuss
this problem is how to characterize and analysis the control
procedure by an appropriate mathematical tool. For this reason,
we introduce the analytical theory based on /*-module. In this
paper we first define a concept of lattice convergence, then
discuss its properties, and finally we study the I*-topology
derived from the convergence and /*-topological lattice group.

I INTRODUCTION

It is well known that the Fuzzy Control and Network of
Neurons play important roles in Artificial Intelligence and
Intelligent Control. The control procedure is often
represented by language rules that is different from the
classical control. The classical stability theory is useless here.
The stability of intelligent control is still an open problem.
The key to discuss this problem is how to characterize and
analysis the control procedure by an appropriate
mathematical tool. For this reason, we introduce an analytical
theory based on 1*-module. In 1995, Mr. Xu Yang, in his
doctoral dissertation thesis [1], first introduced a double
lattice-ordered algebraic structure called /*-module and
discussed its properties, by which he dealt with the problem
of lattice valued game and set up the elemental theory of
lattice valued game. In this paper we first gave a definition of
lattice-convergence on /*-module and further discussed the
properties of the lattice-convergence , finally we discuss the
properties of the /*-topology and /*-topological group on /*-
module. The proofs in this paper which are not difficult are
omitted.

Definition 1.1""  Let (R, v, A, .+ 1,6, <) be a
lattice-ordered commutative unitary ring (/-ring), let
(M, v, A, +,0, <) be a lattice-ordered Abel group (/-
group), iffor Va,BeR, Vx, ye M suchthat ax € M and

() ax+y)=ax+ay,

(2) (a+P)x=ax+fix,

(3) a(fx) = (ap)x,
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4 Ix==x
B x>0a>0 =>ax>0
(6) M, R are conditionally complete lattices.
then the pair (M, R) denoted briefly by M(R) is an /*-module.

2 THE PROPERTIES OF LATTICE
CONVERGENCE ON M

Definition 2.1 Let{s, ne€D} be anetin M, let D be a

directed set. If A \/s, and \/ A s, exist, then called them

n kzn n k2n
respectively superior lattice-limit and inferior lattice-limit of
the net { 5, } denoted respectively by
li:ns,, = A\ S and hms CEN A Sk

n kzn n k2n

A net {s,} lattice-converges to se M if and only if

Y . 7 I3 .
lims, =lims, =s denoted by s, ——s or (L)lims, =s.
n H

n

A net {s,} is increasing (decreasing) if and only if for
Vm,neD,if m2n, then 5,25, (5,<s5,).
Theorem 2.1 Let net {s,} be bounded in M. If the net
{s,} is increasing ( decreasing ), then
(L) li:ns,, =vs, L) li:nsn =/n\sn).

Theorem 2.2 If ﬁrﬁs,, and lims, exist, then

H
1) Hs,, =(L)lim v s, ,
n n kzn

2) l_igs,, =(L) limkfz\ s, , and

Theorem 2.3
increasing net {y,} and decreasing net{z,} which satisfy

s,—=>s if and only if there are

A L
Lys, z »S.

“n

that y, <s,<z,, VneD and y, .
Proof:  "=>" The nets {4,} and {B,} where
A, =V and B, =5 are decreasing and increasing
respectively which satisfy conditions.
"<" Letnets {y,} and {z,} satisfy the given conditions.
Then,

(L) limy,=vy,=s, (L) limz, =z, =5,
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and s, <z,, y,<s, from theorem 2.2. It follows that

v 5, £ vz, =z, Itholds

kzn kzn

llms , =AYV S, SAZ, =5,

n kzn n

then llms =AVS, >Avyk—S from VSkZ Yy, s
n kzn n kzn k2n

lim s,=s5. Similarly we obtain lims, =s,
"

n

namely,
(L)lims, =s.
Theorem 2.4 A net {s,} converges to s if and only if

each subnet {sN(,,,)} of which converges to s.
Proof: "<=" Obviously. The net {s,} is -a special
subset of itself.,
"=" Let {sy..} be a subnet of {s,}. As 5, —>s,
then there are increasing net {y,} and decreasing net {z,} in
M such that

z,—~>s. Taking the

n

L
Y. <s,<z,, VneD, and y, —>>s,

same subscript, - we have

Yrim S Svim S Zyims MEE, N(m)eD, where E is a
directed set. Then {y.,} and {z,.,,} aresubsets of {y,}
and {z,}. Because Vk, meE, k>m, N(k) €D such that
that is to say,

Yy SVY, =S, vV Yy S5, SO
n k2m

(L)limyy,, vy, =s.Asthe {y,,,} isasubnetof {y,},
for YneD, 3m, € E suchthatif p>m,,then N(p)2=n,
50 yn S))N(p) a'nd

Y2 A Yiu <V RS =limyy .,
m

kzm,

vom - From 3) of theorem 2.2, we

that is S=VY, < limy
) Similarly we can show that

(L)li,:nz,v(,,,) = (L)li:nz,, =s. By theorem 2.3, it holds that
. (L)li"r'nsN(m =5.

Theorem 2.5

obtain (L)limy,., =s.

If (L) li'{ns,, # s, then there is a subnet
{Symi of {s,}, each subnet {s, ..} of which holds
D)lim sy, g #5 .
Proof: If (L) “,fn s, #5, we discuss two cases. First,
L) li'r,n s, =t #5. From theorem 2.4,
€ li':nsm,,,) =t#s
for each subnet {s,, } of net {s,}. Second, (L) li'r'n s, does

not exist. a) Let msn and lims, exist, but Hs,, #lims, .
”n

n " n

It is no problem to assume that l—ir_n_s,, =t#5. From c) of
n

lemma 2.2) in [2], there is a subnet {s,,,} of {s,} such that

(L) li;nsN,R(,,) # s for each subnet {Sy.rry} of which. b) If
one of the ﬁfﬁsn and lims, does not exist. By theorem 2:1

in [2], the net {s,} is unbounded. It is no problem to assume
that it is unbounded from above, from a) of lemma 2.2) in 2],
there is a increasing subnet {sy .} which is unbounded from
above and each subnet {sy.z,} ofnet {s,,} is unbounded
from above by b) of lemma 22) in [2], then
(L) li{nsN,R(,,) #s for each subnet {s.p,} of {sy,,}. From
above discussion, there is some subnet {S“} , each subnet
{Sy.rty} Of which holds that (L) li{n Sherily S -

Theorem 2.6 Let D be a directed set, let £, be a
directed set for VmeD and Let F be the product
D x [ [{E,, m D} and for each (m, f) in F let R(m, fy)=(m,

flm)). S is such a function that for each me D and each
nek,, S(mnyeM.If

(L) limlim S(m,n) = s,

then SoR lattice-converges to s.
Proof: We know that the operations A and v satisfy
inﬁnitely divisible law, so

llmS oR(mf)= A v SoR(ng)

Se R(n,
maimn” (.£)

N vSOR(ng)

il
3>
~>

il

3>

w< \>
IV

v SoR(n,g)

1]
1>

A
m f g
vV A n,g(n
nzm fg(")zf(n) ( g( ))

=AV th(n k)

manzm

1]
5>

=limlim S(m,n)=s.

Similarly, it could be shown that lim So R(m, f) = s, hence
(m.f)

(L) lim So R(m, ) =s.
Theorem 2.7 Let {x,}, {y,} be bounded nets. Then
1) fia(x +x,)=x +l_i—rﬁx,, ;

li_m(x + xn) =X +Eg1..xn *

n n

2)If x,<y,, foreach neD,then

ll’rlnx,, < h:n ¥, limx, <limy,.

n n
3) lim(x, v y,) =limx, vlimy,;
n n n
lim(x, A y,) < limx, Alimy,;
n " n

lim(x, v y,) 2limx, vlimy, ;-
n

n n



!i_@.(x» A yn) =.].an Ali_.m_yn *

4). If net { x, } is a bounded separate set, then
limjx, | = (limx,)* +(limx,)",
limlx, | = (limx,)" +(limx,)”

5). If net { x,, } is bounded, then )

(L)lim(-x,) =—(L)limx, .
Theorem 2.8 Let net {x,} be bounded. If there are nets
{y,} and {z,} such that for each neD, y,<x,<z,, and
(Dlimy, = (L)limz, = x; then (L)limx, =x.

Theorem 2.9 Ifnets {x,} and {y,} are decreasing and
(D)limx, =(L)limy, =0, then the net {x,+y,} s

decreasing and (L)lim(x, + y,)=0.

Theorem 2.10 Let net {x,} be bounded in M. The

following results are equivalent each other:.

1 (L) li't,nx,, =x,

2) (L) li'r'n(x,, -x)=0,

3) There are increasing net {y,} and decreasing net {z,}
such that y <x,<z, for each neD, and
limy, =@zn =x,and

4) There is a decreasing net {u,} such that (L) li't'n u,=0
and |x, —x{<u, foreach neD.

Theorem 2.11
then:

D L) im(x, +y,)=x+y,

2y lim(x, vy,)=xvy and

If (L)limx,=x and (L)limy, =y,

W)lim(x, Ay,)=xAYy,

L) limx, =x* and (L) limx, =x~,

4) (L) limx,| =|» , and

S)(L) li:nlx,,l =0 ifand only if (L)limx, = 0.

Theorem 2.12 Let net {x,} be bounded in M.
(D)limx, = x ifand only if (L)limx, - x=0.

Theorem 2.13 (Complete Theorem) (L)limx, exists if
and only if (L)lim v va,( - x,|=0.

n kznmz

Proof: “=>” From theorem 2.12 we have that
X, —>x&x, -4 —->0. Let y, =[x, - x|, we obtain
that
(L) lim k\;’,|xk - x| =(L) lim v y, =limy, = li:n|x,, -x=0.

2.11 we obtain

It holds that '
% = Xg| S [x = x| +]xp = %]
< k\zlnlxk B X| + m\;nlx'h - XI
=2 v
k2n
for each k, m>n. Then

v vix, -x |<2 va -
k2nm2) K "'I k2 k XI’

x, -]

hence (L) h’r'n 4 k\Z/Jx" - x,..|'= 0.

“¢&=” From |x,,| =X, VX, 2X, \}(—x,,) it holds that for
each k, m2n, ’

(x,,,—x,‘)v(x,,-—x,,,)slx,‘— mls.v v.lx,,—x,,,|,

kznmzn
then
X, <x.+V Vix, - and
k m kzrunzﬂ_k MI,
X, Sx, +V Vi, ~x
m k kznm2, k MI
SO
VX, SAX, +V VX, —X
k2n k men ™ k2n mz2n k ’"I,
namel 0svx,—-Ax,<v vix,-x|. We have
y’, k2n k k2n k k2nm2 * ml
(v x = x,)—=>0 from theorem 28. As
2n 2n

v vlr, —x,| is bounded, we have that the net {x,} is
k2nm2n

bounded. So limx, and f'—un—x,, exist. From 1) of theorem

n

limx, - limx, = (L)lim v x, - (L)lim A x,
”n n n kzn n kan

= (L) hrlnn(k\zlnxk - k/z\nxk) =0

>

hence, limx, = Ex,,,then (L)limx, exists.
n n n

3 THE LATTICE CONVERGENCE
PROPERTIES ON /*-MODULE

Because the set R is a l-ring, we are able to establish the
concept of lattice-convergence of a net in R similarly. The
convergence properties of a net in M still hold in R. We
denote the elements of M by x, y, z, ..., and the elements of R

by a, 8,7
Theorem 3.1 Let {x,} be abounded net in M. Then:

1) limax, = ¢limx,, limax, = alimx, if a is positive
n n " "
and convertible,

2) h:nwc,, =¢limx,, limax, = ah:nx,, if a is negative

and convertible, and _
3 (L) limax, = ax if a isconvertibleand a #6.
Theorem 3.2 Let net {x,} be bounded in M and net
{a,} be bounded in R. Then:
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2

1) If x belongs to M and x # Osuch that (L)lima, =
then (L)lima,x = ax, ' n

2)If (L) liyl.na" =4, then (L)li'r'na,,x,, =0, and

3) If (L)li:nx,, =x and (L)liznan =¢ such that o is

convertible and «a # &, then (L)lima,x, = ax .

4 [*-TOPOLOGY LATTICE GROUP

Definition 4.1 A subset ], which satisfies that a point s
befngs to A if and only if there is a net {x,, ne D} in
subset 4 such that (L)limx, = x, is the closure of the subset

A'in M. A subset A is closed if and only if 4=A.

Definition 4.2 A subset 4 of M is open if and only if its
relative complement X ~ A is closed.

Theorem 4.1 Let 3={ X, X is the open subset of M }.
Then the pair (M ,3) is a topological space called /*-
topological space. ,

Definition 4.3 Let (M ,3) be a /*-topological space. A
set U in M is a neighborhood of a point x if and only if U
contains an open set to which x belongs. The neighborhood
system of a point x is the family of all neighborhoods of the
point x.

Lemma 4.1 For each x and y which belong to M and x is
more than or equal to zero, yl <x ifandonlyif -x<y<x.

Theorem 4.2 Let

B(x, &) =1{y, y-xlsg, 0<eseM}.
Then B(x, ¢) is a closed set called ¢ -closed ball.

Proof: If £ is zero then B(x, ¢) is a single point set {x},

it is obvious that {x} is closed. Now let & be positive.

Obviously, it suffices to show that B(x, ¢) < B(x, &) where

B(x, &) is the closure of B(x, £). For each y in E()r,—e)

there is a net {y,,neD} in B(x, &) such that

(L)limy, =y, then ly, —x| <& for each n in D which is a

directed set. From lemma 4.1 we have —-¢<y, ~x<g for

eachnin D, thatis x-¢<y, <x+ ¢ for each nin D. Then
—ES(L)li'r'ny" -x<g,

namely, <¢g, hence yeB(x, ). We have

(Dlimy, - x

shown that B(x, ¢) is closed.

Definition 4.4 Let (M, 3) be an /*-topological space. Let
U(x) be the neighborhood system of x. If for each U eU(x) ,

there is m in D such that x, €U when n>m, then the net
{x,, neD} converges to x associated with the /*-topology
denoted by x, ——>x.

Theorem 4.3 Letnet {x,, neD} bein M. x, —=>x

ifand only if x, ——>x.

Theorem 4.4
topological space.

Theorem 4.5 Letxand & be in M where £2>0, then:

1) B(x, &)—x=B(0, ¢), and

2) B(x, &) B(O, £ +|x)).

Theorem 4.6 A< M is closed ( open ) if and only if
Vx € M, x+A is closed ( open ).

Theorem 4.7 1) If 4 is open and B is a subset of M, then
A+B is open,

2) If 4 is closed, and B is a finite subset of M, then 4+8 is
closed, and

3) If A and B are closed, then Av B and AAB are
closed.

Theorem 4.8 U(x) is a neighborhood system of point x
in M if and only if U —x eU(0) for each U in U(x) where
U(0) is the neighborhood system of point 0.

Proof: Let U(x) be a neighborhood system of point x and

I*-topological space is a Hausdoff

‘U(0) be a neighborhood system of point 0. If U - x eU(0),

then there is an open set / such that V is contained in
‘U -xelU(0), hence U contains F+x. From theorem 4.6 we
know that V'+x is an open set, so U is a neighborhood of point
x which contains point x. Conversely, if U is a neighborhood
of point x , then there is an open set  which contains point x
suchthat V' c U, then V' —xc U - x. From theorem 4.6 we
know that ¥ - x is an open set which contains point 0, hence
U-xel(0).

Definition 4.5 The map f from /*-topological space
(M,3) to [*-topological space (¥, @) is continuous if and only
if f (Z) c m for each subset 4 in M.

Theorem 4.9 The group operation on M is continuous
with respect to /*-topology (M, 3).

Proof: Let fbe a map from M x M to M such that fx,
y)=x+y for each xand y in M, and g be a map from M to M
such that g(x) = -x for each x in M. Firstly, we show that the

function f is continuous, that is A+ Eg A+ B for each
subsets A and B in M. Foreachzin A+ B therearexin A
ne D}
in A and net {y,, me £} in B where D and E are directed
sets such that (L)li;nx,, =x and (L) Ii:,nym =y. The

and y in B such that z=x+y, then there are nets {x

n?

Cartesian product F = Dx E is also a directed set by binary
relation > where (n, m) > (p, q) ifand only if n> p and

m>q foreachnin D and m in E, then itisanetin A+ B.
From theorem 2.11 we have
(Dlimlim(x, +y,) = (L)lim(x, +y) =x+y=z.
From theorem 2.6, we have that
(L)(lim) Zoam = (L)limlimz,

= (L)limlim(x, + y,,) = z
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then z belongs to A+B. It has been shown that
A+B CA+ A+B. Secondly, we will show that the function g is

continuous, that is y g( —A) for each subset 4 in M. For
eachxin —A thereisyin A suchthat x =y then there is

anet {y,} inA suchthat (L)limy, =y, hence {x,} isalso

anetin —A4 where x, =-y, for each n in directed D. From
5) of theorem: 2.7 we have that
(L)limx, =(L)lim(-y,)=—(L)limy, =-y=x,

then x belongs to (—A). We have shown that -4 c (- 4).

Theorem 4.10 The lattice operations on M are
continuous with respect to /*-topology. :

Theorem 4.11 The lattice ordered group M w1th I*-
topology (M,3) is a topological lattice group called /*-
topological lattice group.

Theorem 4.12 Let Q={B(0, &), 0< g€ M}, then:

1) For each U and V in (2, there is W in (2 such that
weclUinV, '

2) For each x in U which belongs to (2, there is V'in Q2
suchthat x+V c U, and
~ 3)Foreach Uin (2, thereis Vin (2 suchthat -V cU .
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