GENERALIZATION OF THE LAW OF LARGE NUMBERS FOR FUZZY NUMBERS

Ruslan R. Salakhutdinov High Point University, NC, USA

This paper presents a new result about the law of large numbers for fuzzy numbers in the framework of the possibility theory. It's a generalized version of this law, results are presented in terms of the additive generator of a triangular norm.

Keywords: Possibility, Necessity, t-norm, additive generator.

Introduction. In the presented paper the generalized version of Fuller's law of larde numbers [2] is discussed. He showed that for the sequense X_1, X_2, \ldots of fuzzy numbers of a symmetric triangular form with a common width d the law of large numbers works. For the definition of T-sum, Fuller applyed t-norm T, which is weaker than Hamacher's operator. In [3,4] Dombi's operator is used and the fuzzy law of large numbers for more general environment is shown as well.

Here t-norm representation theorem of Ling is used as a basic tool and the results are presented in terms of the additive generator of a triangular norm.

Note, that membership function a triangular fuzzy number X = (m,d), is defined as $\mu(x) = 1-|x-m|/d$, if $m-d \le x \le m+d$; otherwise $\mu(x) = 0$ and d-is its width; m-is its modal value $(d>0, -\infty < m < \infty)$.

Now, the grade of the possibilty of the statement: " [a,b] contains the value of X" is defined as [2]

Pos(a \ll X \ll b) = Sup $\mu(x)$; And necessity is defined as a< x < b

Nes(a $\langle X \langle b \rangle = 1$ - Pos(X<a, X>b).

Function T: $[0;1] \times [0;1] \longrightarrow [0;1]$ is t-norm, if T is commutative, associative, non-decreasing and T(0,1) = 0, T(1,1) = 1.

A t-norm will be called Archimedian if T is continuous and T(u,u) < u; 0 < u < 1.

Examples of t-norm are Hamacher's and Dombi's operators [1]

$$T_{H}(u,v) = \frac{uv}{r + (1-r)(u+v-uv)}, T_{D}(u,v) = \left\{1 + \left[\left(\frac{1-u}{u}\right)^{p} + \left(\frac{1-v}{v}\right)^{p}\right]^{1/p}\right\}^{-1}$$

$$r>0$$

T-sum of two fuzzy numbers is denoted as $S_T = (X_1 + X_2)_T$ and its membership function is defined as

$$\mu_{S_T}(z) = \sup_{x+y=z} T(\mu_1(x), \mu_2(y))$$

Results.

Theorem 1. If T is Archimedian t-norm, X_i = (m_i ,d), then for any ξ >0

f - is an additive generator of a triangular norm T, f^{-1} - is its inverse.

$$\mu_{S_n}^{(z)}$$
 - is membership functin of the T-sum $S_n = \left(\frac{X_1 + X_2 + \ldots + X_n}{n}\right)_T$

$$\mathbf{M_{n}} = \frac{\mathbf{m_1} + \mathbf{m_2} + \ldots + \mathbf{m_n}}{\mathbf{n}}.$$

As it's well know, if Lim Nes $(M_n-\xi \leqslant S_n \leqslant M_n+\xi) = 1$, then $n \to \infty$

the law of large numbers for fuzzy numbers works [2].

Proof this theorem is based on the following propositions.

Proposition 1. If T is Archimedian t-norm, $X_i = (m_i, d)$, then membership function T-sum $S_T = (X_1 + X_2)_T$ is

$$\mu_{S_T}^{(z)} = \sup_{x+y=z} T(\mu_1(x), \mu_2(y)) = f^{-1} \Big(\min (f(0), 2 \cdot f(\mu(z)) \Big)$$

$$\mu(z) = \max(0, 1 - |z - (m_1 + m_2)|/2d).$$

Proof of the proposition 1. Out of the definition of T-sum

and Ling's theorem [1], for a fixed z=z* we have:

$$\mu_{S_T}^{(z^*)} = \sup_{x+y=z} T(\mu_1(x), \ \mu_2(y)) = \sup_{x} T(\mu_1(x), \ \mu_2(z^{*-x})) =$$

=
$$\sup_{x} f^{-1} \left(\min (f(0), f(\mu_{1}(x)) + f(\mu_{2}(z^{*}-x)) \right)$$

Let m1<m2. We'll consider the proof taking into consideration only the left parts of membership functions for fuzzy numbers X_1 , X_2 , which have the following type:

$$\begin{split} &\mu_1(x) = \max(0, 1 + (x-m_1)/d), \ m_1 - d \leqslant x \leqslant m_1; \\ &\mu_2(y) = \max(0, 1 + (y-m_2)/d), \ m_2 - d \leqslant y \leqslant m_2; \\ &\mu_2(z^* - x)) = \max(0, 1 + (z^* - x - m_2)/d), \ z^* - m_2 \leqslant x \leqslant z^* - m_2 + d; \end{split}$$

Taking into account that an additive generator $f:X-\to[0;1]$ is a continious and decreasing function with f(1)=0, it's easy to see that $f(\mu_1(x))$ is a deacreasing, while $f(\mu_2(z^*-x))$ is an increasing function on the interval

$$\max(z^*-m_2; m_1-d) \le x \le \min(z^*-m_2+d; m_1).$$

Then the sum: $f(\mu_1(x)) + f(\mu_2(z^*-x))$ will have a minimum value equal to

$$2 \cdot f\left(\max(0, 1 + (z^* - (m_1 + m_2))/2d)\right) = 2 \cdot f\left(\mu(z^*)\right),$$

The minimum value can be reached by x, which can be found as a solution of the following equation: $1+(x-m_1)/d = 1+(z^*-x-m_2)/d$; $x=(z^*+m_1-m_2)/2$.

The same holds true for the right parts of membership functions.

Now it is clear that

$$\mu_{ST}(z) = f^{-1} \left(\min (f(0), 2 \cdot f(\mu(z)) \right)$$

Proposition 1 is proved.

Proposition 2. If T is Archimedian t-norm, $X_i = (m_i, d)$, then membership function of T-sum S_n is

$$\mu_{S_n}(z) = f^{-1} \Big(\min (f(0), n \cdot f(\mu_n(z)) \Big), \mu_n(z) = \max(0, 1 - |z - M_n|/d) \Big)$$

Proof of the proposition 2 is based on the results of the proposition 1.

Now out of the propositions 1,2 and using inequality from [2],[4] we can get the following

$$\label{eq:Nesself} \begin{split} \operatorname{Nes}(|S_n - M_n| \ll \, \xi) &= 1 - \operatorname{Pos}(|S_n - M_n| > \, \xi) = 1 - \sup_{Z = -\infty} \, \mu_{S_n}(z) = \\ &|z - M_n| > \xi \end{split}$$

= 1 -
$$\sup_{Z} f^{-1} \left(\min (f(0), n \cdot f(\max(0, 1 - |z - M_n|/d)) \right) = |z - M_n| > \xi$$

=
$$1-f^{-1}\left(\min (f(0), n\cdot f(\mu_{S_n}(M_n+\xi))\right) = 1-f^{-1}\left(\min (f(0), n\cdot f(1-\xi/d)\right)$$

Which completes the proof of the theorem 1.

Examples. We'll consider some examples using our theorem.

1. As a triangular norm T we'll choose Yager's operator [1]:

$$T_Y(u,v) = 1 - \min(1, (1-u)^q + (1-v)^q)^{1/q}, \quad 0 \le q < \infty$$

its additive generator is $f(x) = (1-x)^q$, f(0)=1, $f^{-1}(y)=1-y^{1/q}$.

Using that we'll calculate the right part of our theorem 1

$$f\left(\mu_{S_n}(M_n+\xi)\right) = \left(1 - (1-\xi/d)\right)^q = \left(\xi/d\right)^q, \quad f^{-1}\left(\min\left(f(0), n \cdot (\xi/d)\right)^q\right) = \left(\xi/d\right)^q$$

= 1 -
$$\left(\min (1, n \cdot \xi/d)^{q}\right)^{1/q} = \max (0, 1 - n^{1/q} \cdot (\xi/d)).$$

Hence, the law of large numbers in this case works.

If we will consider a special case when $q = \infty$ then we will

have Nes $(M_n-\xi \leqslant S_n \leqslant M_n+\xi) = \xi/d$. Hence the fuzzy law of large numbers does not work (see [2] - [4]).

2. As a triangular norm T we'll choose Hamaher's operator with r=0. Its additive generator is f(x)=(1-x)/x, $f(0)=\infty$

 $f^{-1}(y) = 1/(y+1)$. That's why $n \cdot f(1-\xi/d) = (n \cdot \xi/d) / (1-\xi/d)$,

$$f^{-1}((n\cdot\xi/d)/(1-\xi/d)) = \frac{1-\xi/d}{1+(n-1)\xi/d}$$

Therefore $\lim_{n\to\infty} \text{Nes } (M_n-\xi \leqslant S_n \leqslant M_n+\xi) = 1$ and the fuzzy law of large numbers works (see also [2] - [4]).

Note. In this paper we have considered the case when fuzzy numbers have symmetric triangular membership function. Out of the proof of the theorem 1, proposition 1 and 2 and out of the considered examples as well, we can note that the theorem 1 is also true for membership functions that satisfy the following conditions:

- 1. $\mu(x)$ has a modal value m, $\mu(m)=1$;
- 2. $\mu(x)$ is symmetric around m, $\mu(x-m) = \mu(m-x)$;
- 3. $\mu(x)$ is an increasing on the interval [m-d; m], $-\infty \leqslant$ m-d. Acknowledgements:

The author is grateful to Ravil Z. Salakhutdinov for the support provided throughout this research.

References

- 1. Dubois D., Prade H. Teories des possibilities: application a la representation des connaissances en informatique. Paris -1987. -288 p.(in Russian).
- 2. Fuller R. The law of large numbers for fuzzy numbers//BUSEFAL. -1989.-vol.40.-P.25-32.
- 3. Salakhutdinov R.Z. On the law of large numbers for fuzzy numrers // BUSEFAL. -1998.-vol.73.-P.75-77.
- 4. Salakhutdinov R.Z., Salakhutdinov R.R. The law of large numbers and T-stability fuzzy numrers //BUSEFAL. 1998. vol.74. -P.64-67.