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1 Introduction

Many valued logic initiated by Lukasiewicz [11] uses many-valued connectives from
[0,1]% to [0,1]. only truth-functional These connectives are used in fuzzy set theory as
a base of fuzzy logic (cf. Baldwin, Pilsworth [1]). In particular diverse generalizations
of implication are represented by fuzzy relations in [0, 1]. Recently one can find a long
list of formulas representing fuzzy implications (cf. Kiszka, Kochanska, Sliwiriska [10]
or Cordén, Herrera, Peregrin [3]). Simultaneously there are published many set of
axioms describing necessary properties of fuzzy implications (c.f. Baldwin, Pilsworth
[1], Dubois, Prade [6] or Fodor, Roubens {7]). We use here the simplest set of axioms

presented by Fodor and Roubens [7].

Definition 1. Any function I: [0,1]2 — [0,1] is called fuzzy implication if it fulfils

the following conditions:
I1. Vg e (2 < 2= I(2,y) 2 1(2,y)),
12. Yoy (¥ < 2= I(z,y) < I(z,2)),
3. Vyep, 1(0,y) =1,
4. Voepon I(z,1) = 1,

15. I1(1,0) = 0.

*Paper entered to volume Fuzzy Systems in Medicine (Eds. P.S.Szczepaniak, P.J.G.Lisboa,

S.Tsumoto) in Studies in Fuzziness and Soft Computing.
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Set of all fuzzy implications will be denoted by F'I and set of all continuous fuzzy

implications is denoted by C'F'I.

It is evident that a good generalization of the crisp implication must fulfil the

binary implication truth table, i.e.
1(0,0) = 1(0,1) = I(1,1) =1, I(1,0)=0. (1)

We see that axioms 13-15 guarantee (1). Conversely, conditions (1) with axioms I1,

12 suffice for validity of axioms I3 - I5. Namely we have

Lemma 1. Function I: (0,12 — [0,1] fulfilling (1) is a fuzzy implication iff it is

monotonic with respect to both variables.

By virtue of this lemma we can use the name ”"monotonic implications” as the
characteristic property of the family F'I. Moreover, for verification of axioms I1-I5 it

suffice to verify (1) and monotonicity of I.

Example 1. The most frequently used implication functions are usually listed with
suitable author’s name. We have put here six famous implication functions completed
e.g. by Dubois, Prade [6]. All of them fulfil (1) and are monotonic in both variables,
so they belong to FI.

1. Lukasiewicz implication ([11])

' 1 ,ifz <y
Lik(z,y) =min(l —z+y,1) = , T,y €[0,1]. (2)
l—z4+y ,ifz>y

2. Reichenbach implication ({12])
Ino(z,y)=1-z+ay, =z,yel0,1] (3)
3. Godel implication ([9])

1 ,ifz<y
IGD(xay) = ) z,y € [07 1] (4)

y ,ifz>y
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4. Dienes implication ([5])
Ipn(z,y) =max(1—z,y), z,ye€[0,1]. ()
5. Goguen implication ([8])

1 ,ifz =0 1 ,ifz<y
Ioa(z,y) = = , =,y €[0,1]. (6)
min(1,%) , ifz >0 L ifz >y

6. Rescher implication ([13])

1 ,ifz<y
Irs(z,y) = ; z,y € [0,1]. (7)

0 ,ifz>y

Our investigations were inspired by paper of Czogata, Leski [4] were they ask for
relative location of implications (2)-(7). Many formulas for fuzzy implications did
not give elements of FI. For example use formulas (I7) and (112) from [3]:
I(z,y) = max(l — z,min(z,y)) =,y €[0,1],
I(may):ma‘x(oay_m) z,y € [011]

The first example fulfils (1) but is not monotonic with respect to z. The second

example is monotonic but does not fulfil (1) (1(0,0)=I(1,1)=0).

2 Lattice of fuzzy implications

The lattice properties of fuzzy implications family are following.
Theorem 1. Family (FI, min, max) is a complete, completely distribiutive lattice.

Corollary 1. FI has the greatest element

1 ,ifz<lory>0
Il(x7y): ) z,y € [0’1]’ (8)
0 ,ifxz=1andy=0

and the least element

1 ,ifzxz=00ry=1
Io(z,y) = ,  z,y€(01] (9)
0 ,ifz>0andy<1
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Theorem 2. Family (CFI, min, max) is a distributive lattice (a sublattice of (F1I,
min, max)).

However lattice CF'I is not complete. It follows from known fact that sequences

of continuous functionscan have limits which are not continuous (cf. also Example

4).
Theorem 3. Fuzzy implications (2)-(7) form two following chains:

Ipn < Ipe < Iik, (10)

Irs < Igp < Igg < Ik (11)

3 Convexity of fuzzy implications family

Definition 2. Subet X of linear space is convezr over IR if with any two points

z,y € X, X contains line segment between = and y i.e.
Vagpa 2 =Mz + (1 - Ay € X.
Theorem 4. FI and CF1 are convex sets of functions.

The above theorem brings a tool for generation of parametrized families of fuzzy

implications. E.g. the first segment in chain (11) can be parametrized by

1 ,ifz<y
Iy = Mep + (1 - )‘)IRS’ I)\(;C,y) = y T, Y& [07 1]a

Ay L ifz>y

for A € [0,1]. In the same way we can consider multidimensional simplexes of fuzzy

implications.

4 Contrapositive implications
Definition 3 ([7]). By reciprocal function of I € FI we call I,
I'(x,y):[(l—y,l—x) z,y € [071] (12)

Implication [ is called contrapositive if I’ = I.
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Theorem 5. The reciprocal function of an implication I € FI is also an implication

and the same holds for continuous implications. (I € CFI — I' € CFI)

Example 2. Among six fuzzy implications from Example 1 and two from Corollary
1 we have six contrapositive examples: I} = Io, I] = §, Ipg = Irs, Iix = Lk,
Ie = Ire, Ipn = Ipn, and we obtain two new implications

1 ,ifz <y

I&D(may) = ) T,y € [O’ 1]’ (13)
l—z ,ifz>y

1 ,ify=1 1 ,ife <<y
Igo(@,y) = = , z,y €[0,1]. (14)
min(l,i—:f) ,ify<1 —i:—z ,ifz>y

Lemma 2. Let I,J € FI. Operation defined by (10) is order preserving (isotone),

i.€.

IKJ=I'<KJ (15)
and for I, € FI,t € T we get
' ' . ' /
(stgg 1) =sup 1, (inf ) = inf I,. (16)

Theorem 6. Set of all contrapositive fuzzy implications is a complete, completely
distributive lattice and set of all continuous contrapositive fuzzy tmplications is a

distributive lattice.

Examples of contrapositive implications can be obtained not only as lattice sum
or product of given contrapositive implications. Another way is a combination of

reciprocal functions.

Lemma 3. For any I € FI functions min(I, '), max(I,I') are contrapositive im-

plications.

Example 3. Using fuzzy implications (3), (5), (11) and (12) we obtain four contra-

positive implications:

L =lga V Ige, L(z,y) = (17)
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) 1 ,ifz <y
I3 =lge N Igg, I3(z,y) = 4 (18)
\min(%,%—:—j) ,ifz >y
. 1 ,ifrz <y
Iy =Igp V Ip, Iy(z,y) = ¢ (19)
max(l —z,y) ,ifz>y
/ 1 ,ifrz<y
Is =lgp A Igp, Is(z,y) = 4 (20)

min(l —z,y) ,ifz>y

Another way of generating contrapositive implications is getting convex combi-

nations of given examples of implications. Since formula (10) leads us to
M+ (1 =XJ) =A"+(1=XNJ, for I,J € FI, X €[0,1]
then we get

Theorem 7. Set of all contrapositive fuzzy tmplications is convez.

5 Selfconjugate implications

Definition 4. Let ¢: [0,1] — [0, 1] be an increasing bijection, I € F'I. We say that

the function

I*(:E,y) = I;(w’y) = 90—1(1(‘19(:6)790(:9)))7 T,y € [0’ 1] (21)

is @-conjugate to I. Implication I € FI is called y-selfconjugate if I = I and
selfconjugate (absolutely) if I; = I for all .

Theorem 8. Let ¢: [0,1] — [0,1] be an increasing bijection. For any I € FI
(IeCFI)

I e FI (I: € CFI). (22)

Example 4. Let ¢: [0,1] — [0,1] be an increasing bijection. For six implications
from Example 1 and two from Corollary 1 we have: Iy = Io, I = I, I = Irc,

It.p = Igp. So this implications are selfconjugate. For next four implications we get
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new fuzzy implications

1 ,ife <y
I:}G('T’ y) = ) (23)
(ALY L ifz>y
Ipn(z,y) = max(e™ (1 — ¢(z)),y), (24)
Lk (z,y) = min(p™ (1 — @(z) + ¢(y)), 1), (25)
Ino(z,y) = ¢ 11 — w(2) + p(x)e(y)). (26)

Now we can give examples of sequences of continuous implications which limits

are not contionuous. Let p(z) = z™, n € IN. We get

INz,y) = Ifx o (z,y) = min(1, {/1 — z" + y™), nelN, z,y €[0,1],
Iz(w,y) = I}"w,n(z,y) = /1 —z"+ z"y", n €N, z,y € [0,1],
B(z,y) = IpN (7, y) = max(V1 + z",y), n €N, z,y € [0,1].

These sequences are convergent and

lim Irll(a:,y) = Ii(z,y),

n—roo
1 ,ifz<1
lim IX(z,y) = lim I3(z,y) = .
=00 00 .
y ,ifz=1

Lemma 4. Let I,J € FI. Operation defined by (20) is order preserving (isotone),

1.€.

IKJel't (27)
and for I, € FI,t € T we get
(i‘e‘? L) = sup I;, (infL)"=infI. (28)

Theorem 9. Set of all selfconjugate fuzzy implications is a complete, completely dis-
tributive lattice, and set of all continuous selfconjugate implications is a distributive

lattice.
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