LINEARITY OF FUZZY FUNCTIONS DERIVATIVES

Vladimír Janiš

ABSTRACT. A graph of a real fuzzy function can be considered as a collection of nonintersecting graphs of real functions (level functions), connecting values with the same membership degree. It is possible to define a derivative of a fuzzy function in terms of derivatives of its level functions. This derivative at a given point is a fuzzy real number. We show that if we use the triangular norm T for addition of fuzzy functions and their derivatives, then we obtain the inequality $(f + Tg)' \leq f' + Tg'$. An example shows that in general the equality does not hold here.

We will deal with a real fuzzy function of a real (crisp) variable, i.e. with a function that assigns a fuzzy number to a real number. First let us consider a fuzzy number as an LR-fuzzy number (for more details see [4]) with both shape functions strictly monotone. The addition of LR-fuzzy numbers based on Zadeh's extension principle is studied in [2] and [3]. We can define *level functions* for a fuzzy function in the following way:

If $\alpha \in (0;1)$, then the level function f_{α} of a fuzzy function f is a real function for which $f_{\alpha}(x) = y$ if and only if $f(x)(y) = \alpha$ and y belongs to the decreasing part of f(x) (i.e. it is greater than the peak of f(x)). If $\alpha \in (-1,0)$, then $f_{\alpha}(x) = y$ if and only if $f(x)(y) = -\alpha$ and y belongs to the increasing part of f(x) (i.e. it is less than the peak of f(x)). Finally, by f_1 we denote a real function assigning the peak of f(x) to x.

In [1] a derivative of a fuzzy function is defined, using its level functions. We will briefly recall the definition of this derivative:

Suppose the fuzzy function f is defined at a point a and suppose each its level function is continuously differentiable at a. Then its derivative f'(a) is the fuzzy number with the following property: if $\alpha \in (0;1)$, then the α -cut of f'(a) is the interval (I;S), where

$$I = \inf\{f'_{\beta}(a); |\beta| \ge \alpha\}$$

and

$$S=\sup\{f_{\beta}'(a); |\beta|\geq \alpha\}.$$

It can happen that I or S or both have the infinite value, hence the interval (I; S) may be unbounded.

The interval (I; S) is in fact not an α -cut, but a strict α -cut, but as throughout the whole paper we use only this type of cuts, we will omit the word "strict" and

¹⁹⁹¹ Mathematics Subject Classification. 04A72.

Key words and phrases. fuzzy function, level function, derivative, t-norm.

Research supported by grant no. 1/4297/97 of Slovak Grant Agency VEGA

use just the term "cut". The α -cut of a fuzzy number A will be denoted by the symbol $[A]_{\alpha}$.

Given two fuzzy functions f, g, both differentiable at a a question of the linearity arises. In other words we ask whether it holds $(f +_T g)'(a) = f'(a) +_T g'(a)$ for a given t-norm, if both sides exist. The following proposition claims that one inequality always holds and an example will show that the opposite one in general does not hold.

Proposition 1. If the fuzzy functions f and g have fuzzy derivatives f' and g' at the point a, their sum $f +_T g$ has the fuzzy derivative $(f +_T g)'$ at a, where T is a t-norm, then $(f +_T g)'(a) \leq f'(a) +_T g'(a)$.

Proof. Suppose $0 < \alpha < 1$. We will show that the α -cut of the fuzzy number $(f +_T g)'(a)$ is a subset of the α -cut of the fuzzy number $f'(a) +_T g'(a)$.

Let $x \in [(f +_T g)']_{\alpha}$. Then there exist $\beta, \gamma, |\beta| \ge \alpha, |\gamma| \ge \alpha$ such that

$$h_{\beta}(a) < x < h_{\gamma}(a),$$

where h_{β} and h_{γ} are level functions of the fuzzy function $(f +_T g)'$. Due to the assumption of continuous differentiability of the level functions there are level functions H_{β} , H_{γ} of the fuzzy function $f +_T g$ for which

$$(H_{\beta})'(a) = h_{\beta}(a), \quad (H_{\gamma})'(a) = h_{\gamma}(a).$$

From the extension principle we obtain the following: If A, B are fuzzy numbers and $\delta \in (0, 1]$, then

$$[A+_T B]_{\delta} = \cup \{[A]_{\rho} + [B]_{\sigma}; T(\rho,\sigma) \ge \delta\}.$$

This enables us to claim that there are level functions $f_{\gamma_1}, f_{\beta_1}$ of f and $g_{\gamma_2}, g_{\beta_2}$ of g such that

$$H_{\beta}(a) = f_{\beta_1}(a) + g_{\beta_2}(a), \quad T(\beta_1, \beta_2) \ge \alpha,$$

and

$$H_{\gamma}(a)=f_{\gamma_1}(a)+g_{\gamma_2}(a),\quad T(\gamma_1,\gamma_2)\geq\alpha.$$

As the chosen element x fulfills the inequalities

$$f_{\gamma_1}'(a) + g_{\gamma_2}'(a) \le x \le f_{\beta_1}'(a) + g_{\beta_2}'(a)$$

using again the above mentioned equality we see that x belongs to the α -cut of the sum $f'(a) +_T g'(a)$ what completes the proof. \square

The opposite inequality $f'(x) + g'(x) \leq (f(x) + g(x))'$ in general does not hold. In the following example we use the minimum t-norm for the addition (i.e. $T_{min}(x,y) = \min\{x,y\}$) and show that the inequality from Proposition 1 turns to be sharp.

Example 1. Let the fuzzy functions $f, g : [0; 1] \to R$ be given by the following formulas: For $x \in [0; 1]$ put

$$f(x)(t) = \max\left\{0; 1 - rac{|t|}{x+1}
ight\}, \quad t \in R,$$

$$g(x)(t) = \max\left\{0; 1 - rac{|t|}{2-x}
ight\}, \quad t \in R.$$

All the level functions of f and g are linear and hence differentiable on the interval [0;1]. For an arbitrary $x \in [0;1]$ the derivatives of f and g are equal (we take the one-side derivatives at the endpoints of the interval) and

$$f'(x)(t) = g'(x)(t) = \max\{0; 1 - |t|\}, \quad t \in R.$$

We see that both f' and g' are constant fuzzy functions on [0;1]. Note that their sum with respect to the norm T_{min} is again a constant fuzzy function and its common value is a fuzzy number $\max\left\{0;1-\frac{|t|}{2}\right\}$, $t\in R$.

On the other hand the sum $f + T_{min} g$ is a constant fuzzy function with the common value

$$(f +_{T_{min}} g)(x)(t) = \max \left\{ 0; 1 - \frac{|t|}{3} \right\}, \quad t \in R,$$

for each $x \in [0,1]$. Hence all the level functions are constant and therefore for all $x \in [0,1]$ the value $(f + T_{min} g)'(x)$ is the crisp number zero. Thus we obtain

$$(f +_{T_{min}} g)'(x) < f'(x) +_{T_{min}} g'(x),$$

which shows that the derivative defined in [1] is not additive.

REFERENCES

- [1] Kalina, M., Derivatives of fuzzy functions and fuzzy derivatives, Tatra Mountains Math. Publ. 12 (1997), 27-34.
- [2] Marková, A., Additions of LR-fuzzy numbers, Busefal 63 (1995), 25-29.
- [3] Marková, A., T-sum of LR-fuzzy numbers, Fuzzy Sets and Systems 85 (1997), 379-384.
- [4] Mesiar, R., Computation over LR-fuzzy numbers, Proc. CIFT'95, Trento 1995, 165-176.

DEPARTMENT OF MATHEMATICS, FACULTY OF NATURAL SCIENCE, MATEJ BEL UNIVERSITY, TAJOVSKÉHO 40, SK-974 01 BANSKÁ BYSTRICA

E-mail address: janis@fpv.umb.sk