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ON A TYPE OF FUZZY CONTINUITY
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ABSTRACT. This paper is a continuation of [1]. It presents one possible approach to
fuzzy continuity of real functions, utilizing the concept of a nearness. The connection
between standard continuity and N-fuzzy continuity is investigated.

1. INTRODUCTION

In many publications in fuzzy analysis there are presented various approaches
to the fuzzification of concepts like distance, metric and topology.

These consequently enable to fuzzify convergence, continuity, differentiability
and other related notions (see, for example, (2],(3],[4],[5]).

The aim of this paper is to introduce one possible and quite natural fuzzification
of continuous functions based on a "nearness” of real numbers.

In general the nearness of elements of any set X is considered to be a fuzzy
relation N on X with some "appropriate” properties. These properties are not
stable, but depend on the concrete problem and, of course, on the structure of X. In
the majority it is accepted that N(z,z) =1 for each z € X and N(z,y) = N(y, z)
for each z,y € X. Further properties are usually connected with the structure of
X.

If X is a set without any structure, then it is natural to require moreover a

property substituting in some sence triangular inequality. (Questions relevant to
this problem will be treated in this article.)

On the other hand, the presence of algebraical, topological or lattice structure
makes it possible to require further reasonable and natural properties.

We will restrict ourselves to the real case, i.e. X = R - the set of all real numbers.
With respect to the algebraical operations, topology and linear ordering of real
numbers, there are several possible ways, how to define a nearness on R.

In [1] there is the following definition:

A function N : R x R — [0, 1] is called a shift-invariant nearness, if
(1) N(z,z) =1 for each z € R

(2) N(z,y) = N(y,z) for each z,y € R
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(3) N(z,y) > N(z,2) foreach z,y,z € R, suchthat z >y >zorz<y<z
(4) lim z, =00 = lim N(z,,z9) =0 for each zo € R

n—oo n—oo

(5) N(z,y) = N(z+ z,y+2) for each z,y,z € R

Another definition of a nearness on R is in [5):

A function N : R x R — [0, 1] is said to be a uniform nearness, if there exists a
non-increasing function b : [0, 0o] — [0, 1] such that 5(0) = 1, li*m b(z) =0 and
N(z,y) = b(|z — y|) for each z,y € R.

The main result of [1] is the assertion:

A nearness is shift invariant if and only if it is uniform.

2. NON-UNIFORM NEARNESSES

The requirement of uniformity for a nearness of real numbers, expressed, in fact,
by the property (5) is quite natural, but not always necessary.

The geometrical meaning of (5) is the following: _

N(z,y), as a function of two variables, is constant on lines parallel to the line
T =y.

Consider now a nearness defined as follows: N(z,y) = 1,if z > 0,y > 0 and
y€l[5,2z],orifz <0,y<0andy€ [2z,5] and N(z,y) =0 else.

It can be shown, that N satisfies the properties (1)-(4), but not the property
(5). For example:

N(1, %) # N(1+ 1,1 + 1), therefore N is not shift-invariant and thus neither
uniform.

One of the consequences of this fact is that a fuzzy local nearness N, (z), which
can be defined for any nearness and any point zg € R by the formula

Nzo(z) = N(zo,z) for each z € R

needn’t be always a fuzzy interval, symmetrical to the line ¢ = z, (see [1]) and if
T1,9 are two different real numbers, than the graph of N,,(z) one cann’t obtain
by shifting the graph of N, (z):

Example. Let N(z,y) be defined as above. Let z; = 1, z2 = 2. Then

Ni(z) =1, for z € [,2] and Ni(z) = 0 else.

Na(z) =1, for z € [1,4] and Na(z) = 0 else.

Obviously, none of their graphs is symmetrical with the centre at z = 1 or z = 2,
resp.

3. N-FUZZY CONTINUITY

The concept of a nearness N in R enables to introduce a type of convergence
with respect to NV (see Definition 2 in [1]) and consequently a type of continuity for
real functions of a real variable.

From now on we tacitly assume that N is always a uniform nearness on R.(De-
spite the following definitions and notions make sence also in a more general case.)

That means: N(z,y) = b(|z—y|), for a function b mentioned above. The function
b is called a nearness-generating function and is determined uniquely (see [1]).
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Definition 1. Let N be a nearness , f be a real function of a real variable and
zo € R. The function f is said to be N-fuzzy continuous (briefly N-continuous) at
zo if for any number € < 1 there exists a number é < 1 such that for each z € R :

N(z,,z) > & implies N(f(zo), f(z)) > €.

Theorem 1. Let f be a real function of a real variable. The function f s N-
continuous at a point zo € R if and only if for any sequence {z,} of real numbers
lgn N(zp,z0) = 1 tmplies li_{n N(f(zn), f(zo0)) = 1.

Proof. We begin by proving the sufficient condition:

Let us suppose that there exists € o < 1 such that for each natural number n there
is z, € R such that N(zo,z,) > 1 — 1 and simultaneously N(f(zo), f(zx)) < €o.
Then nlgr;o N(zg,zn) =1, but nli{%o N(f(zo), f(za)) # 1.

The necessary condition:
Let for each € < 1 there exists 6(¢) < 1 such that

N(zg,z) > 6 = N(f(z0), f(z)) > €

for any real z.
Suppose lim N(zg,z,) =1 and € ¢ < 1 is arbitrary, but fixed. Put § o = (e o),
n—o0
hence there exists a number ng such that for any naturaln, n > ng : N(zo,z,) > & ¢

and therefore N(f(zo), f(zn)) > € o.

It is evident that Theorem 1 is not affected if we delete uniformity of the nearness.

If X is a set of real numbers and f is a real function defined on X then, as usual,
f is called N-continuous on X, if it is N-continuous at each z € X.

Definition 2. Let N be a nearness and X be a set of real numbers. A real valued
function f defined on X is called uniformly N-continuous on X, if for any € < 1
there exists § < 1 such that for all z,y € X, N(z,y) > ¢ implies N(f(z), f(y)) > €.

It is evident, that a family of N-continuous (at a point, or on a set) functions
depends essentially on N and its properties.

Theorem 2. Let N be a nearness with a nearness-generating function b satisfying
the following condition

(*) Tn, = 0 <= b(z,) = 1.

Then a real function of a real variable f 1s continuous at a point o € R if and
only if it 1s N -continuous at xo.

Proof. The assertion follows immediately from (*) and the fact that N(z,y) =
b(Jz — y|). We outline the proof only for the "if” part; the other part is left to the
reader:

|zn — 20| = 0 <= b(|zn — 20]) = N(zn,z0) = 1 = N(f(zs),f(20)) =
b(|f(zn) — f(z0)l) = 1 = |f(zn) = f(z0)| = O

(*) is fulfilled evidently if b is moreover decreasing and continuous, for example

if
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but also if

b(z) = 1 —z for z € [0, 3] and b(z) = 0 for z > 3, which is neither continuous
nor decreasing. This example indicates that N, and therefore also N-continuity,
depends mostly on the behaviour of b in a right neighbourhood of zero.

Corollary. Let N be a nearness as in Theorem 1, let X be a set of real numbers.
Then a real function defined on X is (uniformly) continuous on X if and only
if it is (uniformly) N-continuous on X.

Theorem 3. Let N be a nearness with such a nearness-generating function b that
there ezists a number K € (0,1) such that b(z) < K for all z > 0.

Then any real function of a real variable 1s uniformly N -continuous on any set
of real numbers.

Proof. Let X C R and ¢ < 1. Then if § € (K,1) is arbitrary and z,y € X are
such that N(z,y) > 4, it follows that b(|z — y|) > é§ > K and therefore |z — y| = 0,
hence z = y and thus N(f(z), f(y)) =1>¢

So this kind of nearness-generating functions gives trivial N-continuous func-
tions. It follows from the fact, that in this case N-convergent are only sequences
of real numbers which are constant from some term (see [1]).

Typical relevant nearness-generating functions are:
b(z)=0ifz >0and b(0) =1 or
b(z) = 24_% if z > 0 and b(0) = 1.

In both discussed cases b(z) = 1 implies x = 0.

Now let’s consider an opposite situation. Suppose that there exists a number
a > 0 such that b(z) = 1 for z € [0, a].

In fact it means, that the corresponding nearness distinguishes only points having
their distance greater than a. N-continuity, obtained in this case, is a little unusual,
but in some sence more expressing an intuitive comprehension of continuity (not
requiring continuous graph):

If two arguments of a function are "near” to each other, then values of the
function at these arguments are "near” to each other, as well.

Example. Let 0 < a < c¢,a,c € R. Define a nearness-generating function b as
follows:

b(z) =1ifz €[0,a), b(z) === if z € [a,c], b(z) =0 if z € (¢,00).

It means that the corresponding nearness N is continuous, N(z,y) = 1if |[z—y| <
a, N(z,y) =0if |z — y| > c and on the interval [a,c| N is linearly decreasing.

Now, let a;,c; be such real numbers that 0 < a; < a and ¢; > 5. Consider now
a function f :R > R :

f(z) = nay if ¢ € [ncy,(n+ 1)ey) for each n € Z.

It can be easily proved that f is uniformly N-continuous on R, despite it has
infinitely many points of discontinuity.

To see this, let € < 1; we can take an arbitrary § € (0, 1), because N(z,y) > >0
implies |z — y| < ¢ < 2¢;, what implies
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|f(z) = f(y)| € a1 < a, and therefore N(f(z), f(y)) =1> e

On the other hand, with respect to this nearness, even continuous functions
needn’t be N-continuous.

For example the function f(z) =z
that |zo + 2| > 3.

Let’s sketch a trivial verification :

N(zg,z0+a+ 1) =b(zo —z0o —a - 1) =b(la + L]) = b(a) =1, but

N(z3,(z0 + a+ £)?) = b(Jz§ — (zo + a + 3)?]) = b(|2z0a + a?]) # 1.

From the previous example it follows immediately that if a nearness N doesn’t

distinguish some points with positive distance, then there always exist continuous
functions, which are not N-continuous.

2 is not N- continuous at any point z¢ such
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