ON THE JOINT OBSERVABLE AND THE JOINT DISTRIBUTION IN PRODUCT MV ALGEBRAS

BELOSLAV RIEČAN

ABSTRACT. A notion of a product MV algebra is presented and two existence theorems (for joint observable and joint distribution) are formulated in product MV algebras.

1. MV algebra of fuzzy sets

A prototype of MV algebra is the set \mathcal{F} of all fuzzy sets $f: X \to \langle 0, 1 \rangle$ measurable with respect to a σ -algebra \mathcal{S} of subsets of X. Certainly, \mathcal{F} is closed with respect to many operations. The MV algebra operations are the following: two binary operations \oplus , \odot , where

$$f \oplus g = \min(f + g, 1),$$

$$f \odot g = \max(f + g - 1, 0),$$

one unary operation * with

$$f^* = 1 - f$$

and two nulary operations (fixed elements) $0_X, 1_X$. Recall that \oplus can be interpreted as the composition of two pictures, if $f\colon X\to \langle 0,1\rangle$ is interpreted as a picture (0 is white colour, 1 is black colour, $\alpha\in(0,1)$ means something grey, the composition of two grey colours can not be greater than 1) and \odot can be obtained by the de Morgan rule: $f\odot g=(f^*\oplus g^*)^*$. If $f=\chi_A,\ g=\chi_B$ are characteristic functions, then $f\oplus g=\chi_{A\cup B},\ f\oplus g=\chi_{A\cap B},\ f^*=\chi_A$.

Generally MV algebra is an algebraic system $(M, \oplus, \odot, *, 0, u)$ satisfying some properties. Of course, following the Mundici representation theorem it is more convenient to define MV algebra by the help of lattice ordered groups.

AMS Subject Classification (1991): 03G20, 06F20, 28B10. Keywords: MV algebra, observable, joint distribution.

This paper has been supported by grants VEGA 95/5305/471 and 2/5124/98.

2. Commutative lattice ordered groups

Commutative lattice ordered group is an algebraic system $(G, +, \leq)$ with the following properties:

- 1. (G, +) is a commutative group.
- 2. $(G, , \leq)$ is a partially ordered set being a lattice, i.e., to every $a, b \in G$ there exists the least upper bound $a \vee b$ and the greatest lower bound $a \wedge b$.
- 3. If $a, b, c \in G$ and $a \leq b$, then $a + c \leq b + c$.

These axioms have many useful consequences, as $a + (b \lor c) = (a+b) \lor (a+c)$, $a \land (b \lor c) = (a \land b) \lor (a \land c)$ etc.

A typical example of a commutative l-group is the set of all real-valued functions defined on a set. Here f+g is the usual sum of two functions and $f \leq g$ if and only if $f(x) \leq g(x)$ for any $x \in X$.

Another example of a commutative ℓ -group is the set of all functions $f\colon X\to R$ measurable with respect to a σ -algebra of subsets of X. This example is related to the first example presented in Section 1. This is a key to the notion of general MV algebra. It is sufficient to define in a commutative ℓ -group MV algebra operations similarly as it was done in the mentioned example.

3. MV algebra

Let $(G, +, \leq)$ be a commutative lattice ordered group and $u \in G$ be any element such that u > 0, i.e., $u \geq 0$ and $u \neq 0$. Put

$$M = \langle 0, u \rangle = \{ v \in G; \, 0 \le v \le u \}.$$

Define further (analogously to the example presented in Section 1) two binary operations \oplus , \odot by the formulas

$$a \oplus b = (a+b) \wedge u$$
,
 $a \odot b = (a+b-u) \vee 0$

and a unary operation * by the formula

$$a^* = u - a.$$

Then the algebraic system $(M \oplus, \odot, *, 0, u)$ is called an MV algebra.

If we consider the ℓ -group $(R^X, +, \leq)$ of all real-valued functions on a set X, then its subset $M = \{f : X \to R; 0 \leq f \leq 1\}$ is an MV algebra

ON THE JOINT OBSERVABLE

 $(M, \oplus, \odot, *, 0_X, 1_X)$, where

$$\begin{split} f \oplus g &= (f+g) \wedge 1_X \,, \\ f \odot g &= (f+g-1_X) \vee 0_X \,, \\ f^* &= 1_X - f \,. \end{split}$$

Remark that $a \oplus b = a + b$, if $a \le b^*$. Indeed, $a \le b^* = u - b$ implies $a + b \le u$, hence $a \oplus b = (a + b) \land u = a + b$.

4. States and observables

The notion of a state corresponds to the notion of a probability measure in the Kolmogorov model, the notion of an observable corresponds to the notion of a random variable.

Recall that a probability measure is a normed, additive and continuous setfunction defined on a σ -algebra. If we substitute the σ -algebra by an arbitrary MV algebra, we obtain the following definition.

DEFINITION. A state m on an MV algebra $M = (M, \oplus, \odot, *, 0, u)$ is a mapping $m: M \to (0, 1)$ satisfying the following properties:

- (i) m(u) = 1
- (ii) If $a, b, c \in M$ and a = b + c, then m(a) = m(b) + m(c).
- (iii) If $a_n \in M$ (n = 1, 2, ...), $a \in M$ and $a_n \nearrow a$, then $m(a_n) \nearrow m(a)$.

Recall that a random variable is an S-measurable function $\xi \colon X \to R$ defined on a measurable space (X, \mathcal{S}) , where \mathcal{S} is a σ -algebra, i.e., $\xi^{-1}(B) \in \mathcal{S}$ for any Borel set $B \in \mathcal{B}(R)$. If we assigne to any $B \in \mathcal{B}(R)$ its preimage $\xi^{-1}(B) \in \mathcal{S}$, then we obtain a σ -morphism from $\mathcal{B}(R)$ to \mathcal{S} . Therefore it is natural to consider an observable in our MV algebra model as a morphism $x \colon \mathcal{B}(R) \to M$.

DEFINITION. A weak observable (with respect to a state m) is a mapping $x: \mathcal{B}(R) \to M$ satisfying the following conditions:

- (i) m(x(R)) = 1.
- (ii) If $A \cap B = \emptyset$, then $x(A \cup B) = x(A) + x(B)$.
- (iii) If $A_n \nearrow A$, then $x(A_n) \nearrow x(A)$.

A weak observable is called observable, if x(R) = u.

PROPOSITION. If $m \colon M \to \langle 0, 1 \rangle$ is a state and $x \colon \mathcal{B}(R) \to M$ is an observable, then $m_x = m \circ x \colon \mathcal{B}(R) \to \langle 0, 1 \rangle$ is a probability measure.

5. Joint observable

The notion of a joint observable in our model corresponds to the notion of a random vector in the Kolmogorov model. Recall that a random vector T is a couple of random variables, $T = (\xi, \eta)$, hence

$$T=(\xi,\eta)\colon X\to R^2$$
.

If we assigne to any Borel set $B \in \mathcal{B}(R^2)$ its preimage $T^{-1}(B) \in \mathcal{S}$, we obtain a morphism

$$\mathcal{B}(R^2) \to \mathcal{S}, \quad B \mapsto T^{-1}(B)$$
.

Moreover

$$T^{-1}(C \times D) = \xi^{-1}(C) \cap \eta^{-1}(D) \tag{*}$$

for any $C, D \in \mathcal{B}(R)$.

Let us return now to the MV algebra \mathcal{F} of fuzzy sets (Section 1) consisting of all measurable functions $f: X \to \langle 0, 1 \rangle$. Consider two observables $x, y: \mathcal{B}(R) \to \mathcal{F}$. We want to define the joint observable of x, y. It should be a morphism

$$h \colon \mathcal{B}(R^2) \to \mathcal{F}$$

satisfying some condition analogous to (*). Of course, instead of intersection of the sets $\xi^{-1}(C)$ and $\eta^{-1}D$) we need to consider the intersection of fuzzy sets x(C) and y(D), where x(C) and y(D) are functions from X to (0,1). Of course, there exists infinitely many possibilities how to define the intersection of fuzzy sets. But the only one is suitable for us: the usual product $x(C) \cdot y(D)$ of two real functions x(C), y(D). Namely only in this case the couple of operations +, fulfills the distributive law.

DEFINITION. The joint observable of two weak observables $x, y \colon \mathcal{B}(R) \to \mathcal{F}$ is a mapping $h \colon \mathcal{B}(R^2) \to \mathcal{F}$ satisfying the following conditions:

- (i) $m(h(R^2)) = 1$.
- (ii) If $A \cap B = \emptyset$, then $h(A \cup B) = h(A) + h(B)$.
- (iii) If $A_n \nearrow A$, then $h(A_n) \nearrow h(A)$.
- (iv) If $C, D \in \mathcal{B}(R)$, then $h(C \times D) = x(C) \cdot y(D)$.

It is not difficult to prove ([4]) that the joint observable exists for any observables $x, y \colon \mathcal{B}(R) \to \mathcal{F}$.

6. Product MV algebra

We want to define the joint observable in a general MV algebra M. Of course, it is necessary to have a product of two elements. Therefore, we shall assume that there is given a binary operation \cdot on M satisfying some axioms.

ON THE JOINT OBSERVABLE

DEFINITION. A product MV algebra is an MV algebra $M = (M, \oplus, \odot, *, 0, u)$ together with a binary operation on M satisfying the following conditions:

- (i) $u \cdot u = u$.
- (ii) The operation \cdot is associative.
- (iii) If $a+b \le u$, then $c \cdot (a+b) = c \cdot a + c \cdot b$ and $(a+b) \cdot c = a \cdot c + b \cdot c$ for any $c \in M$.
- (iv) If $a_n \nearrow 0$, $b_n \searrow 0$, then $a_n \cdot b_n \searrow 0$.

Evidently, the MV algebra \mathcal{F} of fuzzy sets (Section 1) is a product MV algebra. Now the notion of a joint observable can be introduced in any product MV algebra.

DEFINITION. Let M be a product MV algebra, $x, y \colon \mathcal{B}(R) \to M$ be weak observables. The joint observable of x, y is a mapping $h \colon \mathcal{B}(R^2) \to M$ satisfying the following conditions:

- (i) $m(h(R^2)) = 1$.
- (ii) If $A \cap B = \emptyset$, then $h(A \cup B) = h(A) + h(B)$.
- (iii) If $A_n \nearrow A$, then $h(A_n) \nearrow h(A)$.
- (iv) If $C, D \in \mathcal{B}(R)$, then $h(C \times D) = x(C) \cdot y(D)$.

7. The joint observable extension theorem

We are not able to prove the existence of the joint observable in any MV algebra. Therefore we shall restrict our considerations to so-called weakly σ -distributions MV algebras.

DEFINITION. An MV algebra M is σ -complete, if any sequence (x_n) of elements of M has in M the least upper bound $\bigvee_n x_n$. A σ -complete MV algebra is weakly σ -distributive, if for any bounded sequence $(a_{ij})_{i,j}$ such that $a_{ij} \searrow 0$ $(j \to \infty, i = 1, 2, ...)$ it is

$$\bigwedge_{\varphi \in N^N} \bigvee_{i=1}^\infty a_{i\varphi(i)} = 0 \, .$$

Weak σ -distributivity is really a kind of distributivity. Namely, if $\bigwedge_j a_{ij} = 0$ by the assumption, then

$$\bigwedge_{\varphi} \bigvee_{i} a_{i\varphi(i)} = \bigvee_{i} \bigwedge_{j} a_{ij} = 0.$$

Another view is given by the real case. If (a_{ij}) is a bounded double sequence of real numbers such that $a_{ij} \downarrow 0 \ (j \to \infty)$, then to every $\varepsilon > 0$ and every $i \in N$ there exists $\varphi(i) \in N$ such $a_{ij} < \varepsilon$ for any $j \ge \varphi(i)$. Particularly

$$a_{i\varphi(i)} < \varepsilon$$
,

hence

$$\bigvee_{i=1}^{\infty} a_{i\varphi(i)} \le \varepsilon. \tag{+}$$

Since to every $\varepsilon > 0$ there exists $\varphi \colon N \to N$ such that (+) holds, we obtain

$$\bigwedge_{\varphi \in N^N} \bigvee_{i=1}^{\infty} a_{i\varphi(i)} = 0.$$

Recall that the weak σ -distributivity is a necessary conditions for a Riesz space G for any G-valued measure could be extended from a ring to the generated σ -ring ([11]).

The first of two main results presented in the paper is the following:

THEOREM 1. ([8]). Let M be a weakly σ -distributive product MV algebra. Then to any observables $x, y : \mathcal{B}(R) \to M$ there exists their joint observable.

8. The joint distribution existence theorem

If x, y are two observables and h their joint observable, we can construct the composit mapping

$$m_h = m \circ h \colon \mathcal{B}(R^2) \to \langle 0, 1 \rangle$$
.

It is easy to see that m_h is a probability measure such that

$$m_h(C\times D)=m\big(h(C\times D)\big)=m\big(x(C)\cdot y(D)\big)$$

for any $C, D \in \mathcal{B}(R)$.

In the Kolmogorov model, m_h is the probability distribution corresponding to given random variables. Indeed, if $\xi, \eta \colon X \to R$ are random variables and $T = (\xi, \eta)$ is the corresponding random vector, then its probability distribution $P_T \colon \mathcal{B}(R^2) \to \langle 0, 1 \rangle$ is defined by

$$P_T(B) = P\big(T^{-1}(B)\big)\,,$$

hence

$$P_T(C \times D) = P(T^{-1}(C \times D)) = P(\xi^{-1}(C) \cap \eta^{-1}(D)).$$

ON THE JOINT OBSERVABLE

DEFINITION. We say that a probability measure $\mu \colon \mathcal{B}(R^2) \to \langle 0, 1 \rangle$ is the joint distribution of observables $x, y \colon \mathcal{B}(R) \to M$, if

$$\mu(C \times D) = m(x(C) \cdot y(D))$$

for any $C, D \in \mathcal{B}(R)$.

THEOREM 2. ([9]). For any product MV algebra and any observables x, y: $\mathcal{B}(R) \to M$ there exists their joint distribution.

9. Applications

The first important application of the joint observable is a possibility to built a calculus with observables. If $h: \mathcal{B}(R^2) \to M$ is the joint observable of observables $x, y: \mathcal{B}(R) \to M$, then the sum $x + y: \mathcal{B}(R) \to M$ can be defined by the formula

$$x + y = h \circ g^{-1},$$

where $g: \mathbb{R}^2 \to \mathbb{R}$ is defined by g(u, v) = u + v. This formula can be justified by the classical case. If $T = (\xi, \eta)$ is a random vector, then

$$\xi + \eta = g \circ T$$
,

hence

$$(\xi + \eta)^{-1} = T^{-1} \circ g^{-1}.$$

The second important application of the notion of joint observable is the following. Consider a sequence $(y_n)_n$ of observables. Let $h_n \colon \mathcal{B}(R^n) \to M$ be the joint observable of $y_1, \ldots y_n$. Then $\mu_n = m \circ h_n \colon \mathcal{B}(R^n) \to \langle 0, 1 \rangle$ is a probability measure. To the sequence $(\mu_n)_n$ the Kolmogorov consistency theorem can be applied and a local representation of observables by random variables can be obtained ([10]). By this apparatus some probability assertions can be proved (laws of large numbers, central limit theorem etc.). As it was noted in [9], in some problems (e.g., the definition of the conditional probability) instead of the joint observable only the joint distribution can be used.

REFERENCES

- [1] CHANG, C. C.: Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.
- [2] CHOVANEC, F.: States and observables on MV algebras, Tatra Mt. Math. Publ. 3 (1993), 55-64.
- [3] KLEMENT, E. P.—MESIAR, R.—PAP, E.: Triangular Norms (to appear).

- [4] MESIAR, R.—RIEČAN, B.: On the joint observables in some quantum structures, Tatra Mt. Math. Publ. 3 (1993), 183-190.
- [5] MUNDICI, D.: Interpretation of AFC*-algebras in Lukasiewicz sequential calculus, J. Funct. Anal. 65 (1986), 15-63.
- [6] RIEČAN, B.: Fuzzy connectives and quantum models, in: Cybernetics and system research 92 (R. Trappl, ed.), Vol. 1, World Scientific, Singapore, 1992, pp. 335-338.
- [7] RIEČAN, B.: On limit theorems in fuzzy quantum spaces, Fuzzy Sets and Systems (to appear).
- [8] RIEČAN, B.: On the product MV algebras, Tatra Mt. Math. Publ. (to appear).
- [9] RIEČAN, B.: On the joint distribution of observables, Soft Computing (to appear).
- [10] RIEČAN, B.—NEUBRUNN, T.: Integral, Measure, and Ordering, Kluwer, Dordrecht, 1997.
- [11] WRIGHT, J. D. M.: Stone-algebra-valued measures for vector lattices, J. London Math. Soc. 19 (1976), 107-122.

Mathematical Institute Slovak Academy of Sciences Štefánikova 49 SK-814 73 Bratislava SLOVAKIA

E-mail: riecan@mau.savba.sk

Department of Mathematics Faculty of Natural Sciences Matej Bel University Tajovského 40 SK-974 01 Banská Bystrica SLOVAKIA