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A NOTE TO INDEPENDENT EVENTS ON QUANTUM LOGICS

OLGA NANASIOVA

Slovak University of Technology

ABSTRACT. The classical probabilistic independence of random events can be defined in sev-
eral equivalent ways. Let (Q2, S, P) be a probability space, A,B € S, P(A) # 0, P(B) # 0.
Then A and B are independent iff (1) P(A N B) = P(A)P(B), (2) P(A|B) = P(A|2), (3)
P(B|A) = P(B|S?). However, the above equivalences may fail on the quantum logics. Namely,
it is possible that p(alb) = p(a|l) but p(bla) # p(b|1).

CONDITIONAL STATES ON A QUANTUM LOGIC

A set L will be called a quantum logic (an orthomodular lattice) [4]

(i) L # 0, partially ordered set with 0 and 1.

(i) For any a,be LaVbe L.
(i) Thereis amap L : L — L:

(a) For any a € L (a*)* =a.

(b)) fac LthenaVat=1.

(c) If a,b € L such that a < b then bt < at.

(w) If a,b € L such that a < b then b = a V (at A b) (orthomodular law).

Elements a,b € L will be called: orthogonal aLb iff a < b'; compatible a < b iff there

)

exist ay, by, c € L mutually orthogonal, such that a =a; Vcand b=5; Ve

A map m : L — R such that

(1) m(0) =0 and m(1) = 1.
() If aLb then m(aV b) = m(a) + m(b)

is called a state on L. If we have orthomodular o-lattice and m is o-additive function then
m will be called a o-state.

Let M be a set of states on L. The pair (L, M) will be called a quite full system (briefly
qfs)if {meM; m(a)=1}C{meM; m(b)=1}impliesa <b.

Supported by grant VEGA1/4064/97



54

2 OLGA NANASIOVA

On the quantum logic a conditional state (conditional probabilities )has been studied
by several authors ([5], [6], [7], 8], [9], [10], [17]). These aproachies were inspired by papers
[1], 2], [3], [15], where this problem was studied on classical probability space.

Cassinelli and Beltrametti [6] have defined a transformation Q,: M, — M, such that

(I.) s(Qam = s(m) xa, where cxb = (cV b1) A b.

Cassinelli and Truini [9] added the following properties:
(II.) Let m € M and put L(m) = {b € L; m(b) > 0}. Then Q(y: L(m) —» M is a
map, and for any b € Lo Q(.): My — M is a map.

(IIL) If a,b € L such that a < b, then Qym(a) = 2.

Then the number 2ym(a) is called the conditional probability of the event a by the con-
dition b in the state m.

Definition. ([10]) Let(L, M) be a q.f.s. and M be a g-convex set of states. Let p( | ):
L x L. — [0, 00) satisfy:
(A) For any b € L. and p(b]b) = 1.

(B) If p(c|l) =1 and b,c* b € L then p( |b) = p(c *b|b)p( |c* b), where cx b =
(VL)AL

(C) Ifa,b,c € L,aVb,aVbVceLthenp(alaVdVc)=p(alaVbplaVbdlaVbVec).
The function p(.|.) will be called a function of conditional probability on L.

(L. is an additive subset of L)

Theorem. ([10]) Let (L,M) be q.f.s. and M be a o-convex set of states. Let m(a) =
m(b) = 1 implies m(a Ab) = 1. Let c € L,

L.={be L;b is not orthogonal to c}

Let p(.|.): L x L. — {0, 1] satisfy (A) - (C). Let there be s(p(.|1)) = c. Then for any b€ L
s(p(.|b)) exists and s(p( |b)) = cxb. Moreover,ifa <b(a € L, b€ L.) then

_ p(afl)
Al =)

Conversely, let (L, M) be a supported system and M be a o-convex set of states. If the
function p™(.|.), m € M satisfies the axiom IL.-III. on L x L(m) then it satisfies (A) - (C).

These definitions of conditional probabilties do not give an answer for noncompatible
elements. In the following we give another definition of conditional states (probabilities )
which is equivalent to the previous one on a Boolean algebra.

Let (L, M) be a q.s.f. Let us denote by the symbol M* = {1 — m; for any m € M|}. If
© € M* then

() ©(0) =1 and ©(1) =0.
(i) If aLb then O(aV b) = O(a) + O(b) — 1.
(iiz) If ay,...an, € L, and moreover they are mutually orthogonal, then

O(a1 V..Va,)=(0(a1)+..+0(an))—n+1
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Definition. Let (L, M) be quantum logic and My C M U M*. Then M, will be called a
conditional system of functions if there exists binary operation © on M, such that

(i) Forany a € My o © o € M.
(i) f o, 8,0 © 8 € My then o 6 (a © ) € My and moreover o © (a © 8) = 8.
(1) f o, 8,7,8a© B,80v € My then a ©7,(a67) © (e © B) € My and moreover

(@eer)0(20B)=B0"7

In other words the couple (My, ©) is a difference set (DS) [11], [12]). It can be shown that
a classical Kolmogorovian conditional probability space is DS . Conditional probabilities
on quantum logic can also be organized as DS ([17]).

Let m € M be given such that m(a) = 1 iff @ = 1. It can be shown, that such a state
exists and more over there exists a subset My of M such that the set M* = M, U {©}
(@ =1 —m) with a partial binary operation © on M*: a,8 € M*, then a © 3 exists iff

(1) if o # B then there exists an element a € L and v € M, such that 8(a) = 1,
v(a) =0 and a = a(a)B + afat)y (y:=a0 B
(2) fa=pthenaof=0.
is DS. It can be shown that:

(1) if o © [ exists then it is unique;
(2) forany a € M* a © 0 =
(3) the element O © a exists iff a = ©

Denote 8 = pqo(.|a). The function p, has properties of conditional probabilities:

i for any a € L such that ps(a|l) # 0 pa(ala) = a
1 if ¢ < a then ( )
a(aAc
pa(Cla) = a(a)

Example 1. Let L = {a,a*,b,b,0,1}, where alat, blbt, aVb=aVbt =at Vb=
atvbt =1, aAb=aAbl =alt Ab=at AbL =0 (L is quantum logic) and m € M
such that m(a) = 0.1, m(b) = 0.3. Let a,a*,3,8* € M such that a(a) = 1, a*(a) = 0,
B(b) = 1, p*(b) = 0 and moreover m = m(a)a + m(at)a* = m(b)B + m(b+)B*. From
this we get a(b) = pm(bla) € (0,1), a*(b) = pm(Bla*) € (2, 1), B(a) = pm(ald) € (0, 1),
B*(a) = pm(aldt) € (0, %) It is clear that M* = {m,a,a*,3,8*,0 =1 —m}.

Let pm(.]-) is the conditional function on L in the state m. Let a,b € L be such that
Pm(.|a),pm(.|b) exist. If pn(a|b) = m(a) then we will say that a is independent with
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respect to b. In the classical probability space a is independent with respect to b iff b is
independent with respect to a. It is not true on quantum logic.

Example 2. Let L = {a,at,,b*,0,1} (L is quantum logic )and m € M such that
m(a) = 0.1, m(b) = 0.3. Let a,a*,B,5* € M such that a(a) = 1, a*(a) = 0, B(b) =1,
B*(b) = 0 and moreover m = m(a)a + m(al)a* = m(b)8 + m(b1)B*. If b is independent
to a then a(b) = o*(b) = m(b) = 0.3. It does not imply that a is independent to b. If
B(a) = 0.2, then f*(a) = 75 and B = pm(.|b), B* = p(.|b*).

Note: In the real live it is clear that for example the wheather forecast is dependent
on the real weather, but real weather is independent on the forecast. We can say that a
conditional state is a measure of dependency of some events.

Futher, systems of states on a quantum logic (and the corresponding algebraic structures
) werw studied also in the framework of fuzzy sets theory, see e.g. [18],[19],[20],[21].
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