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1. Introduction

Fullér [1] proved a law of large numbers for sequences of symmetric triangular
fuzzy numbers with common spread. Further investigations were done by Triesch [17],
Hong [2,3,4], Hong and Kim [5], Jang and Kwon [6], Salakhutdinov [15],
Salakhutdinov and Salakhutdinov [16]. Several results contained in above-mentioned
papers can be immediately improved. Some of them are false. And some of them are
formulated in a general form, which should be examined in more details for specific t-

norms used as a basis for addition of fuzzy numbers.
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action COST 15
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Recall first the fuzzy version of the law of large numbers, which concerns the

limit properties of T-based sums of sequences of LR-fuzzy numbers, where T is some

given triangular norm; see e.g. [7].

Definition 1.

A fuzzy quantity A is a so called LR-fuzzy number A = (a, o, Bz if the corresponding

membership function satisfies for all xe R

L(%%), for a-a<x<a,
A(x) = R(%%), for asx<a+pf ,
0, else
where a is the peak of A; & > 0 and > 0 is the left and the right spread, respectively,
and L and R are decreasing continuous functions from [0,1] to [0,1] such that L(0) =

R(0) =1 and L(1) = R(1) = 0. Recall that L and R is called the left and the right shape

function, respectively.

The addition of fuzzy quantities is based on a given t-norm T, following Zadeh’s

extension principle, by

A® B(z) = sup(T(A(x), B(¥))),ze R

X+y=z
where A, Bare given fuzzy quantities. If T is an Archimedean continuous t-norm with

additive generator f then the addition of fuzzy quantities can be expressed as follows

AGT3B(Z)=fH)( inf (f o A(x)+ f °B(y)), ze€R,
x+y=z
where f s the pseudoinverse of fi defined by

FO@) = £ min(£(0),x)), x [0+l

Definition 2.
Let (4,),n-4, =(a,.@,.8,),, ,n€N, be a sequence of LR-fuzzy numbers (not

necessarily with the same shapes and spreads). We say that the sequence (A,, )neN

. +...+
obeys the T-law of large numbers if a = lim 4 a

n—oo n

% exists and forall zeR,

liml(A1 D - @A,,)z) =2.(2),
n—»>o pn T T
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where -l—A(z) = A(nz),neN.
n

The above Definition 2 is a direct generalization of the original Fullér’s [1]
definition of the T-law of large numbers. However, its philosophy is not sound. The

sum of involved fuzzy numbers is based on some given t-norm T while the averaging

i

by n corresponds to the min-based addition of fuzzy numbers. Namely, put 1 A=B,
n

i=1,...,n. Then (if A was not crisp) B, GP...EPB,, = A if and only if TIRan A = min.

As an immediate consequence we have the violating of the T-law of large numbers for
fuzzy numbers whenever T possesses some non-trivial idempotents, see e.g. counter

example of Hwang [4]. More details can be found in Markova-Stuptianova [11].

2. Improvements and corrections of published results

Let T be a continuous Archimedean t-norm. The results on T-law of large
numbers of Jang and Kwon [6] obtained in their Theorem 1 can be immediately
generalized not requiring the concavity of shape function g, from [6]. It is enough to
apply the approach of Hong [2] used in his Theorem 1.

On the other hand, Hong’s Theorem 1 can be generalized even for sequences of fuzzy

numbers without uniformly bounded supports, requiring the next property only:

limnf* (A" (x))2 £(0) forall x 0, ©)
where f is some convex lower bound of an additive generator f of T, and A® is the
lowest concave upper bound of centralized fuzzy numbers Ay, ... , A, we are dealing
with i.e.,

AP (x)> A, (x—a,),VxeR,Viell, ... ,n}.

Several improvements of negative example of Hong [3,4] are contained in
Markova-Stupiianova [11].

Example of Hong [4] violating the law of large numbers based on the Hamacher
t-norm shows also that the Theorem 1 of Jang and Kwon [6] is not correct. Namely,
they should require stronger conditions on the peaks of their fuzzy numbers, e.g. fixed

peak for all involved fuzzy numbers.
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More serious mistakes are contained in the paper of Salakhutdinov [15] N amely,
his Theorem 2 is completely false, see e.g. the counter example of Hong [3]. The main
error is hidden in non-correct application of limit properties, claiming that the validity

of the T,-law of large numbers for t-norms T; < ... < T, < ... < T with T =lim T,

n—»w

ensures the validity of the T"-law of large numbers for any T" < T.
Similarly, the results of Salakhutdinov and Salakhutdinov [16] continues the above
erroneous approach. It is evident from the results of Hwang [2] and Markova-

Stupfianova [11] that their hypothesis about the validity of the T-law of large numbers
only for not T-stable shapes is not true.

3. Sufficient conditions for the T-law of large numbers in specific cases

Let A, = (a, o, B )ir. Let T be an Archimedean t-norm with an additive generator f.
Then the validity of the T-law of large numbers for (A )neN is equivalent with the

n

validity of the condition (0). In the specific case T = Tp (product t-norm) and L(x) =

=R(x) = 1 — x (linear shapes), a, = 8, = «/; , Tp-law of large numbers was shown to be

true, see [6]. We can improve their example as follows:

Proposition 1.

The sequence (A, )neN, A =(a,a, n)m,n eN, L(x) =R(x) = I - x, xe[0,1], obeys

.. n
the Tp-law of large numbers whenever lim— =0, where

n—w
c'l

c, =max(a,, ... ,@,, B, ... . B,).

Proof.

It is immediate that A™ = O,max(al,...,an),{nax(ﬂ,,... .B.)| - Recall that

a, b

n LR

f(x)=-logx is a (convex) additive generator of t-norm Tp Then the condition (Q) is

fulfilled whenever o = lim—n log(l{iD =lim-n log(R(biD, forany x>0, i.e.,
a'l

n—>wo n—o
n



nR—®0

lim—n log(l - —)—c-) = +00,

If {c,}, is bounded, then the latest equality is obvious (and then lim-— = oo). For

R—>o0 c
n

n

c, >o,itis lim—nlog(l——)ij=xliml=+oo (for all x > 0) iff limi=oo.
c

n—>w n—>o c” n—>w cn

Note that we can generalize Proposition 1 in several directions. Firstly, let f be
a convex lower bound of an additive generator f of a t-norm T (if f is itself convex, we

can take f = f ). Then the conclusions of Proposition 1 with respect to the T-law of

large numbers are valid whenever (f ') (1")<0. Recall that in the case of T = Ty,
(— log 1') =~1. For the Hamacher t-norm Ty, f(x)= 1. 1and f'(17)=-1.
x
For the Yager t-norm T, , pe J0,f, f,(x)=(1-x)". In the case p<1,f, are

concave and the corresponding f is, e.g..f =1-x with (f *) (1I")=-1. In all these case

the Proposition 1 can be applied. However, for p > 1, f, (1I")=0, and then the

Proposition 1 cannot be applied.

Proposition 2.

The sequence of linear (triangular) fuzzy numbers (A,) ., A, =(a,c,,  ),neN

neN?*“"n

.. n
obeys the T: -law of large numbers for a given p > 1 whenever hm—p =00, where c,

n—w0
cll

is defined as in Proposition 1.

Proof.

n—-w n—rw P
Cc, c,

P
It is enough to deal with limn(l—(l——)-c—D =xliml,x>0. Then

xlim—-21= £,(0) forall x>0 is equivalent with lim—— = co.
n—w Cn n-»w0 cn
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Note that the Proposition 2 can be derived directly from results of Kolesirova
[8,9]. Indeed, following [8,9], it is

! (& Vei(e Ve
—(A,@...G;A,,)= a,—(Za,ﬂ L WA ,where ~+1 =1, Then the T” -
n T, T n\ia n\ iz P q g

law of large numbers is equivalent with the equalities

rl‘iﬂ%(z”:ai")% =liml(2ﬂiqj){l 0. (00)

i=1

It is a matter of simple calculations to show that equalities (00) are fulfilled whenever

p 14
lim = lim—"— =0, and hence when, lim

n-—»w n n—>wo n n—»c0 c
n

n
- =0,

On the other hand, we can generalize also the shapes L and R. If L and R" are the
corresponding concave upper bounds, the non-zero value of derivatives (f "o L'(0° ))

and ( f oR* (0" )) allows to apply Proposition 1.
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