B-B Fuzzy Sets \S (II)*

Shi Kaiquan
Department of Automation Engineering,
Shandong University of Technology,
Jinan, Shandong 250061, P.R.China.

Abstract

This paper proposes B-B fuzzy set theory which is the continuation of [1].

This paper proposes union-ordinary resolution theorem, intersection-ordinary resolution theorem of B-B fuzzy set S which establish contact between B-B fuzzy set S and ordinary set S_{λ} . These results get ready for B-B fuzzy logic, B-B fuzzy reasoning in theory.

This paper points out that

- 1°. There exists union-ordinary resolution form $S = \bigcup_{\lambda \in [-1,1]} \lambda S_{\lambda}$ and intersection -ordinary resolution form $S = \bigcap_{\lambda \in [-1,1]} \lambda S_{\lambda}$ at the same time in B-B fuzzy set S, which give the important theoretic basis for B-B fuzzy logic and B-B fuzzy reasoning.
- 2° . Union-ordinary resolution theorem, intersection-ordinary resolution theorem of O-B fuzzy set \underline{A} (L.A. Zadeh Fuzzy Set \underline{A}) are the special form of those of B-B fuzzy set \underline{S} .

Keywords: B-B fuzzy set, Union-ordinary resolution theorem, Intersection-ordinary resolution theorem.

1. Introduction

Applying resolution method [3, 4], fuzzy set \underline{A} can be expressed by ordinary set A_{λ} in O-B fuzzy set \underline{A} (L.A.Zadeh fuzzy set \underline{A}), which establish contact between fuzzy set \underline{A} and ordinary set A_{λ} . This is a larger success in the study of O-B fuzzy set \underline{A} , and the study of O-B fuzzy set theory gets deep development.

Paper [1] proposes B-B fuzzy set $\underset{\sim}{S}$, then people propose such questions naturally: Can fuzzy set

^{*} The project supported by Natural Science Foundation of Shandong Province . China

S be expressed by ordinary set S_{λ} ? Can fuzzy set S make the resolution of S_{λ} ?

Due to above questions, this paper proposes union-ordinary resolution theorem, intersection-resolution theorem of B-B fuzzy set S, which give following answers: There exist resolution relations between B-B fuzzy set S and ordinary set S_{λ} , or we say, B-B fuzzy set S can be expressed by ordinary set S_{λ} ; union-ordinary resolution theorem, intersection-ordinary resolution theorem establish contact between B-B fuzzy set S and ordinary set S_{λ} .

The results given in this paper make clear: union-ordinary resolution theorem, intersection-ordinary resolution theorem of O-B fuzzy set \underline{A} are the special forms of those of B-B fuzzy set \underline{S} . Under certain conditions, union-ordinary resolution theorem, intersection-ordinary resolution theorem of B-B fuzzy set \underline{S} can be simplified into those of O-B fuzzy set \underline{A} .

Appointed that signs and definitions in this paper without explanations can be found in [1]; X is a finite universe, $\mathscr{F}(X)$ is the set of B-B fuzzy set S, and S (x) is a fuzzy kiss function of x concerning S. B-B fuzzy set S is the normal fuzzy set. For simplification and not arising confusion, $\forall \lambda_1 \in [0, 1]$, $\forall \lambda_2 \in [-1, 0]$ and $|\lambda_1| = |\lambda_2|$, it is denoted by $\lambda \in [-1, 1]$.

2. Union-ordinary resolution theorem of B-B fuzzy set

Definition 2.1 Let $S_{\lambda}^+ \in \mathscr{P}(X)$ be λ -cutset of $S \in \mathscr{F}(X)$ in $X^+ \cup X^\circ \subset X$, $S_{\lambda}^+(x)$ is said to be the characteristic function of x concerning $S_{\lambda}^+ \subset X^+ \cup X^\circ$, and :

$$S_{\lambda}^{+}(x) = \begin{cases} 1, & x \in S_{\lambda}^{+} \subset X^{+} \cup X^{\circ} \\ 0, & x \in S_{\lambda}^{+} \subset X^{+} \cup X^{\circ} \end{cases}$$
 (2.1)

Definition 2.2 Let $S_{\lambda}^- \in \mathscr{S}(X)$ be λ -cutset of $S \in \mathscr{F}(X)$ in $X^- \cup X^\circ \subset X$, $S_{\lambda}^-(x)$ is said to be the characteristic function of x concerning $S_{\lambda}^- \subset X^- \cup X^\circ$, and :

$$S_{\lambda}^{-}(x) = \begin{cases} -1 , & x \in S_{\lambda}^{-} \subset X^{-} \bigcup X^{\circ} \\ 0 , & x \in S_{\lambda}^{-} \subset X^{-} \bigcup X^{\circ} \end{cases}$$
 (2.2)

Definition 2.3 Let $S \in \mathcal{F}(X)$, $\lambda \in [-1, 1]$; Provided that $\lambda S \in \mathcal{F}(X)$, the fuzzy kiss function λS is defined as:

$$(\lambda S)(x) = \lambda \wedge S(x) \tag{2.3}$$

If $S \in \mathcal{P}(X)$, then

$$(\lambda S)(x) = \lambda \wedge S(x) \tag{2.4}$$

where S is a ordinary set, $\mathcal{P}(X)$ is the set of S, S(x) is the characteristic function of x concerning S.

From definition 2.3 of this paper and definition 3.1 of [1], let $\lambda_1, \lambda_2 \in [-1, 1]$, we get:

1. 1°. given $S \in \mathcal{F}(X)$, if $\lambda_1 < \lambda_2$; $\lambda_1, \lambda_2 \in [0, 1]$; then

$$\lambda_1 S \subseteq \lambda_2 S$$

2° given $S \in \mathscr{F}(X)$, if $\lambda_1 < \lambda_2$; $\lambda_1, \lambda_2 \in [-1, 0]$; then

$$\lambda_1 S \subseteq \lambda_2 S$$

2. given S, $K \in \mathcal{F}(X)$, $\lambda \in [-1, 1]$, $S \subseteq K$:

$$\lambda S \subseteq \lambda K$$

Theorem 2.1 Let $S \in \mathcal{F}(X)$ be the B-B fuzzy set in X, S_{λ} the λ -cutset of $S \in \mathcal{F}(X)$, $S_{\lambda} \in \mathcal{F}(X)$, then:

$$S = \bigcup_{\lambda \in \{-1,1\}} \lambda S_{\lambda} \tag{2.5}$$

Proof: 1°. Let $\lambda \in [-1, 0]$, for any $x \in X^- \cup X^\circ$, from definition 2.3 of this paper and definition 3.1, 3.3 of [1], we get:

$$(\bigcup_{\lambda \in \{-1,0\}} \lambda S_{\lambda})(x) = \bigvee_{\lambda \in \{-1,0\}} (\lambda \wedge S_{\lambda}(x))$$

$$= (\bigvee_{\lambda \in \{-1,S(x)\}} (\lambda \wedge S_{\lambda}(x))) \vee (\bigvee_{\lambda \in \{S(x),0\}} (\lambda \wedge S_{\lambda}(x)))$$

$$= \bigvee_{\lambda \in \{-1,S(x)\}} (\lambda \wedge S_{\lambda}(x)) = \bigvee_{\lambda \in \{-1,S(x)\}} \lambda = S(x)$$

$$S = \bigcup_{\lambda \in \{-1,0\}} \lambda S_{\lambda}$$

$$(2.6)$$

 2° . Let $\lambda \in [0, 1]$, for any $x \in X^{+} \cup X^{\circ}$, similar to 1° or see [3], we get

so:
$$\sum_{k=0}^{\infty} \int_{\lambda \in [0,1]} \lambda S_{k}$$
 (2.7)

For $\lambda \in [-1, 1]$, from 1° , 2° , we get:

so:

$$S = \bigcup_{\lambda \in [-1, 1]} \lambda S_{\lambda} \tag{2.8}$$

Theorem 2.2 Let $S \in \mathcal{F}(X)$ be the B-B fuzzy set in X, S_{λ} the λ -strong cutset of $S \in \mathcal{F}(X)$, $S_{\lambda} \in \mathcal{F}(X)$, then

$$S = \bigcup_{\lambda \in -1, 1} \lambda S_{\lambda} \tag{2.9}$$

Proof: It is similar to that of theorem of 2.1, so it is omitted.

Theorem 2.3 Let $S \in \mathcal{F}(X)$ be the B-B fuzzy set in X, and

$$H: [-1, 1] \rightarrow \mathscr{P}(X)$$

 $\lambda \rightarrow H(\lambda)$

satisfies $\lambda \in [-1, 1], S_{\lambda} \subseteq H(\lambda) \subseteq S_{\lambda}$

then

$$S = \bigcup_{\lambda \in [-1, 1]} \lambda H(\lambda)$$
 (2.10)

Proof: 1° . Let $\lambda \in [-1, 0]$, from definition 3.5 of [1], we get $S_{\lambda} \subseteq H(\lambda) \subseteq S_{\lambda}$, $\lambda S_{\lambda} \subseteq \lambda H(\lambda) \subseteq \lambda S_{\lambda}$

2°. Let $\lambda \in [0, 1]$, from definition 3.5 of [1], we get $S_{\lambda} \subseteq H(\lambda) \subseteq S_{\lambda}$, $\lambda S_{\lambda} \subseteq \lambda H(\lambda) \subseteq \lambda S_{\lambda}$

For $\lambda \in [-1, 1]$, from (2.11), (2.12), we get

$$\underset{\sim}{S} = \bigcup_{\lambda \in -1, 1} \lambda H(\lambda) \tag{2.13}$$

Due to theorem 2.1, 2.2, 2.3, we get easily:

Theorem 2.4 Let $S \in \mathcal{F}(X)$ be B-B fuzzy set,

1°. if
$$\lambda_1 < \lambda_2$$
; $\lambda_1, \lambda_2 \in [0, 1]$, then
$$H(\lambda_1) \supseteq H(\lambda_2) \tag{2.14}$$

2°. if
$$\lambda_1 < \lambda_2$$
; $\lambda_1, \lambda_2 \in [-1, 0]$, then
$$H(\lambda_2) \supseteq H(\lambda_1) \tag{2.15}$$

Proof: 1° if for λ_1 , $\lambda_2 \in [0, 1]$ and $\lambda_1 < \lambda_2$, we have

$$H(\lambda_1) \supseteq S_{\lambda_1} \supseteq H(\lambda_2) \supseteq S_{\lambda_2}$$

then we get: $H(\lambda_1) \supseteq H(\lambda_2)$ (2.16)

$$2\,^{\circ}$$
 . if for λ_1 , $\lambda_2{\in}$ [-1, 0] and $\lambda_1{<}\,\lambda_2$, we have

$$H(\lambda_2) \supseteq S_{\lambda_2} \supseteq H(\lambda_1) \supseteq S_{\lambda_1}$$

then we get:

$$H(\lambda_2) \supseteq H(\lambda_1) \tag{2.17}$$

Theorem 2.5 Let $S \in \mathcal{F}(X)$ be B-B fuzzy set, we have:

 1° if $\lambda \in (0, 1)$, then

$$S_{\lambda} = \bigcap_{\alpha < \lambda} H(\alpha) , \quad \lambda \neq 0$$
 (2.18)

$$S_{\lambda} = \bigcup_{\alpha > \lambda} H(\alpha), \quad \lambda \neq 1$$
 (2.19)

 2° if $\lambda \in (-1, 0)$, then

$$S_{\lambda} = \bigcap_{\lambda < \alpha} H(\alpha) , \quad \lambda \neq 0$$
 (2.20)

$$S_{\lambda} = \bigcup_{\alpha < \lambda} H(\alpha), \quad \lambda \neq -1$$
 (2.21)

Proof: 1° . For $\lambda \in (0, 1)$, for any $\alpha < \lambda$, $H(\alpha) \supseteq S_{\alpha} \supseteq S_{\lambda}$, so we get:

$$\bigcap_{\alpha<\lambda}\mathsf{H}(\alpha)\supseteq S_{\lambda}$$

Due to

$$\bigcap_{\alpha<\lambda} H(\alpha) \subseteq \bigcap_{\alpha<\lambda} S_{\alpha} = S_{\left(\bigvee_{\alpha<\lambda} \alpha\right)} = S_{\lambda}$$

we get:

$$S_{\lambda} = \bigcap_{\alpha < \lambda} H(\alpha) \tag{2.22}$$

For $\lambda \in (0, 1)$, for any $\alpha > \lambda$, similar to above, we get:

$$S_{\lambda} = \bigcup_{\alpha > \lambda} H(\alpha) \tag{2.23}$$

2°. For $\lambda \in (-1, 0)$, for any $\lambda < \alpha$, $S_{\lambda} \subseteq S_{\alpha} \subseteq H(\alpha)$, so we get:

$$\bigcap_{\lambda < \alpha} \mathbf{H}(\alpha) \supseteq S_{\lambda}$$

Due to

$$\bigcap_{\lambda<\alpha} H(\alpha) \subseteq \bigcap_{\lambda<\alpha} S_{\alpha} = S_{\left(\bigwedge_{\lambda<\alpha} \alpha\right)} = S_{\lambda}$$

we get:

$$S_{\lambda} = \bigcap_{\lambda < \alpha} H(\alpha)$$

(2.24)

For $\lambda \in (-1, 0)$, for any $\alpha < \lambda$, similar to above, we get

$$S_{\lambda} = \bigcup_{\alpha < \lambda} H(\alpha) \tag{2.25}$$

Here we point out:

1°. B-B fuzzy set $S = \sum_{\lambda \in [-1, 1]} \lambda S_{\lambda}$;

Can B-B fuzzy set $S_{\lambda} \in \mathcal{P}(X)$: $S_{\lambda \in [-1, 1]} \cap S_{\lambda}$? If there exists $S_{\lambda} = \bigcap_{\lambda \in [-1, 1]} \lambda S_{\lambda}$, then the two dual, supplementary forms bring great convenience for B-B fuzzy logic and B-B fuzzy reasoning theory.

 2° . A simple fact accepted by all people explains why we want to find intersection-resolution forms of B-B fuzzy set \underline{S} : many algebraic characters of the subsystem of an algebraic system are broken by union-operation, but they are conserved by intersection-operation. For example: the union of two subspaces is not necessarily so a subspace, the union of two subgroups is not necessarily so a subgroup,; On the contrary, the intersection of two subspace must be a subspace, the intersection of two subgroup must be a subgroup.

We carry these simple facts a step forward: there exist similar problems in B-B fuzzy logic and B-B fuzzy reasoning. So the intersection-ordinary resolution form of B-B fuzzy set S is very important, and B-B fuzzy logic, B-B fuzzy reasoning will be discussed in later thesises.

3. Intersection -ordinary theorem of B-B fuzzy set

Definition 3.1 Let $S \in \mathscr{F}(X)$ be the B-B fuzzy set in X, $\lambda \in [-1, 1]$; Provided that $\lambda S \in \mathscr{F}(X)$, the fuzzy kiss function of λS is defined as:

$$(\lambda \underbrace{S})(x) = \lambda \bigvee \underbrace{S}(x) \tag{3.1}$$

Theorem 3.1 Let $\underset{\sim}{S} \in \mathscr{F}(X)$ be the B-B fuzzy set in X, then

$$S = \bigcap_{\lambda \in [-1, 1]} \lambda S_{\lambda} \tag{3.2}$$

Theorem 3.2 Let $S \in \mathcal{F}(X)$ be the B-B fuzzy set in X, then

$$S = \bigcap_{\lambda \in [-1, 1]} \lambda S_{\lambda} \tag{3.3}$$

In the following, we only give the proof of theorem 3.2 and that of theorem 3.1 is omitted.

Proof: 1°. Let
$$\lambda \in [0, 1]$$
, $\forall x \in X^+ \cup X^\circ$

$$\left(\bigcap_{\lambda \in [0, 1]} \lambda S_{\lambda}\right)(x) = \bigcap_{\lambda \in [0, 1]} (\lambda S_{\lambda})(x) = \bigcap_{\lambda \in [0, 1]} (\lambda \vee S_{\lambda}(x))$$

$$= \left(\bigcap_{\lambda \in [0, S(x)]} (\lambda \vee S_{\lambda}(x))\right) \wedge \left(\bigcap_{\lambda \in [S(x), 1]} (\lambda \vee S_{\lambda}(x))\right)$$

$$= \bigwedge_{\lambda \in [S(x),1]} (\lambda \vee S_{\lambda}(x)) = \bigwedge_{\lambda \in [S(x),1]} \dot{\lambda} = \underbrace{S}_{\sim}(x)$$

$$S = \bigcap_{\lambda \in [0, 1]} \lambda S_{\lambda} \tag{3.4}$$

2°. Let $\lambda \in [-1, 0]$, for any $x \in X^- \cup X^\circ$, similar to 1° or see [4], we get

$$\underset{\sim}{S} = \bigcap_{\lambda \in [-1, 0]} \lambda S_{\lambda} \tag{3.5}$$

For $\lambda \in [-1, 1]$, due to (3.4), (3.5), we get

$$S = \bigcap_{\lambda \in [-1, 1]} \lambda S_{\lambda}$$
(3.6)

Theorem 3.3 Let $S \in \mathscr{F}(X)$ be the B-B fuzzy set in X, and

$$H: [-1, 1] \to \mathscr{P}(X)$$

 $\lambda \to H(\lambda)$

satisfies:

$$\lambda \in [-1, 1], \quad S_{\lambda} \subseteq H(\lambda) \subseteq S_{\lambda}$$
, then

$$S = \bigcap_{\lambda \in [-1, 1]} \lambda H(\lambda)$$
 (3.7)

Proof: From definition 3.4, 3.5 of [1], we get:

1°. Let
$$\lambda \in [-1, 0]$$
, $S_{\lambda} \subseteq H(\lambda) \subseteq S_{\lambda}$, $\lambda S_{\lambda} \subseteq \lambda H(\lambda) \subseteq \lambda S_{\lambda}$

so

$$\bigcap_{\lambda \in [-1,0]} \lambda S_{\lambda} \subseteq \bigcap_{\lambda \in [-1,0]} \lambda H(\lambda) \subseteq \bigcap_{\lambda \in [-1,0]} \lambda S_{\lambda}$$

Due to theorem 3.1, 3.2, we get:

$$S = \bigcap_{\lambda \in \{-1,0\}} \lambda S_{\lambda} \supseteq \bigcap_{\lambda \in \{-1,0\}} \lambda H(\lambda) \supseteq \bigcap_{\lambda \in \{-1,0\}} \lambda S_{\lambda} = S$$

i.e.

$$S = \bigcap_{\lambda \in [-1,0]} \lambda H(\lambda)$$
 (3.8)

 2° . Let $\lambda \in [0, 1]$, $S_{\lambda} \subseteq H(\lambda) \subseteq S_{\lambda}$, $\lambda S_{\lambda} \subseteq \lambda H(\lambda) \subseteq \lambda S_{\lambda}$

so:

$$\bigcap_{\lambda \in [0,1]} \lambda S_{\lambda} \subseteq \bigcap_{\lambda \in [0,1]} \lambda H(\lambda) \subseteq \bigcap_{\lambda \in [0,1]} \lambda S_{\lambda}$$

Due to theorem 3.1, 3.2, we get:

$$S = \bigcap_{\lambda \in [0,1]} \lambda S_{\lambda} \subseteq \bigcap_{\lambda \in [0,1]} \lambda H(\lambda) \subseteq \bigcap_{\lambda \in [0,1]} \lambda S_{\lambda} = S$$

i.e.

$$S = \bigcap_{\lambda \neq 0} \lambda H(\lambda) \tag{3.9}$$

For $\lambda \in [-1, 1]$, from (3.8), (3.9), we get

$$S = \bigcap_{\lambda \in [-1,1]} \lambda H(\lambda) \tag{3.10}$$

From theorem 3.1, 3.2, we get directly:

Theorem 3.4 Let $S \in \mathcal{F}(X)$ be the B-B fuzzy set in X, $S(X) \subseteq Q \subseteq [-1, 1]$, $S(X) = \{S(x) | x \in X\}$, then

$$\underset{\sim}{S} = \bigcap_{\lambda \in \mathcal{O}} \lambda \, S_{\lambda} \tag{3.11}$$

Proof: From definition 3.4, 3.5 of [1] and definition 2.1, 2.2, 2.3 of this paper; $Q' \subseteq [0, 1]$, $Q'' \subseteq [-1, 0]$, and $Q = Q' \cup Q''$

1°. Let
$$\lambda \in Q$$
, for any $x \in X^+ \cup X^\circ$, we have
$$(\bigcap_{\lambda \in Q} \lambda S_{\lambda})(x) = ((\bigcap_{S(x) > \lambda} \lambda S_{\lambda}) \cap (\bigcap_{S(x) \le \lambda} \lambda S_{\lambda}))(x)$$

$$= ((\bigcap_{S(x) > \lambda} \lambda S_{\lambda})(x)) \wedge ((\bigcap_{S(x) \le \lambda} \lambda S_{\lambda})(x))$$

$$= (\bigwedge_{S(x) > \lambda} (\lambda \vee S_{\lambda}(x))) \wedge (\bigwedge_{S(x) \le \lambda} (\lambda \vee S_{\lambda}(x)))$$

$$= \bigwedge_{S(x) \le \lambda} \lambda = S(x)$$

$$S = \bigcap_{\lambda \in Q} \lambda S_{\lambda} \qquad (3.12)$$

so:

2°. Let $\lambda \in Q''$, for any $x \in X^- \cup X^\circ$, similar to 1°, we get

$$\sum_{\lambda \in \mathcal{O}}^{} = \bigcap_{\lambda \in \mathcal{O}}^{} \lambda S_{\lambda} \tag{3.13}$$

For $\lambda \in Q = Q' \cup Q''$, from (3.12), (3.13), we get

$$S = \bigcap_{\lambda \in Q} \lambda S_{\lambda} \tag{3.14}$$

Here we point out:

- 1°. The second part of this paper gives three union-ordinary resolution theorems and some relational of B-B fuzzy set S. When $\lambda \in [-1, 1]$ turns into $\lambda \in [0, 1]$ (or $X^- = \emptyset$), union-ordinary resolution forms of B-B set S turn into those of O-B fuzzy set S given in S.
- 2° . The third part of this paper gives three intersection-ordinary resolution theorems and some relational results of B-B fuzzy set S. When $\lambda \in [-1, 1]$ turns into $\lambda \in [0, 1]$ (or $X^- = \emptyset$), intersection-

ordinary resolution forms of B-B fuzzy set \underline{S} turn into those of O-B fuzzy set \underline{A} given in [4].

 3° . Union-ordinary resolution forms, intersection-ordinary resolution forms of B-B fuzzy set $\underset{\sim}{S}$ constitute B-B fuzzy dual, supplementary ordinary resolution system.

From the above discussion of 2, 3, we give without proof:

4. Relational theorem of union-ordinary resolution and intersection-ordinary resolution of B-B fuzzy set

Theorem 4.1 Let $\bigcup_{\lambda \in [-1, 1]} \lambda S_{\lambda}$, $\bigcap_{\lambda \in [-1, 1]} \lambda S_{\lambda}$ be union-ordinary resolution, intersection-ordinary resolution of S, respectively; for any λ , then

$$\bigcup_{\lambda \in [-1, 1]} \lambda S_{\lambda} = \bigcap_{\lambda \in [-1, 1]} \lambda S_{\lambda} \tag{4.1}$$

where S_{λ} is the λ -cutset of S, $\lambda \in [-1, 1]$, $S_{\lambda} \in \mathcal{P}(X)$, $S \in \mathcal{F}(X)$.

Theorem 4.2 Let $\bigcup_{\lambda \in [-1, 1]} \lambda S_{\lambda}$, $\bigcap_{\lambda \in [-1, 1]} \lambda S_{\lambda}$ be union-ordinary resolution, intersection-ordinary resolution of S, respectively; for any λ , then

$$\bigcup_{\lambda \in [-1, 1]} \lambda S_{\lambda} = \bigcap_{\lambda \in [-1, 1]} \lambda S_{\lambda} \tag{4.2}$$

where S_{λ} is the λ -strong cutset of S_{λ} , $\lambda \in [-1, 1]$, $S_{\lambda} \in \mathcal{P}(X)$, $S_{\lambda} \in \mathcal{F}(X)$.

Theorem 4.3 Let $\bigcup_{\lambda \in [-1, 1]} \lambda H(\lambda)$, $\bigcap_{\lambda \in [-1, 1]} \lambda H(\lambda)$ be union-ordinary resolution, intersection-ordinary resolution of S, respectively; for any λ , then

$$\bigcup_{\lambda \in [-1, 1]} \lambda H(\lambda) = \bigcap_{\lambda \in [-1, 1]} \lambda H(\lambda)$$
 (4.3)

where $H(\lambda)$ is the λ -cutset of S, $\lambda \in [-1, 1]$, $H(\lambda) \in \mathcal{P}(X)$, $S \in \mathcal{F}(X)$. If B-B fuzzy set S degenerates into O-B fuzzy set S, then theorem 4.1, 4.2, 4.3 degenerate into relational theorems of union-ordinary resolution and intersection-ordinary resolution of L.A.Zadeh fuzzy set; $\lambda \in [-1,1]$ degenerates into $\lambda \in [0,1]$, $X = X^+ \cup X^- \cup X^\circ$ degenerates into $X = X^+ \cup X^\circ$, i.e.

Theorem 4.4 Let $\bigcup_{\lambda \in [0, 1]} \lambda A_{\lambda}$, $\bigcap_{\lambda \in [0, 1]} \lambda A_{\lambda}$ be union-ordinary resolution, intersection-ordinary resolution of A, respectively; for any λ , then

$$\bigcup_{\lambda \in [0, 1]} \lambda A_{\lambda} = \bigcap_{\lambda \in [0, 1]} \lambda A_{\lambda} \tag{4.4}$$

where $\underset{\sim}{A}$ is L.A. Zadeh fuzzy set, A_{λ} is λ -cutset of $\underset{\sim}{A}$.

Theorem 4.5 Let $\bigcup_{\lambda \in [0, 1]} \lambda A_{\lambda}$, $\bigcap_{\lambda \in [0, 1]} \lambda A_{\lambda}$ be union-ordinary resolution, intersection-ordinary resolution of A, respectively; for any λ , then

$$\bigcup_{\lambda \in [0, 1]} \lambda A_{\lambda} = \bigcap_{\lambda \in [0, 1]} \lambda A_{\lambda}$$
(4.5)

where $\underset{\sim}{A}$ is L.A. Zadeh fuzzy set, A_{λ} is the λ -strong cutset of $\underset{\sim}{A}$.

Theorem 4.6 Let $\bigcup_{\lambda \in [0, 1]} \lambda H(\lambda)$, $\bigcap_{\lambda \in [0, 1]} \lambda H(\lambda)$ be union-ordinary resolution, intersection-ordinary resolution of A, respectively; for any λ , then

$$\bigcup_{\lambda \in [0, 1]} \lambda H(\lambda) = \bigcap_{\lambda \in [0, 1]} \lambda H(\lambda) \tag{4.6}$$

where $\underset{\sim}{A}$ is L.A. Zadeh fuzzy set, $H(\lambda)$ is λ -cutset of $\underset{\sim}{A}$.

Clearly, theorem 4.4, 4.5, 4.6 are direct corollaries of theorem 4.1, 4.2, 4.3; in fact, theorem 4.4, 4.5, 4.6 can be gotten directly by [3], [4].

References

- [1]. Shi Kaiquan. B-B Fuzzy Sets \lesssim (I), BUEFAL, France, (to appear).
- [2]. L.A.Zadeh, Fuzzy Sets, Information and Control, 8, 1965, 338 353.
- [3]. Luo Chengzhong. Fuzzy Sets and Set Covers, Journal of Fuzzy Mathematics, 4, 1983, 113 126. (In Chinese)
- [4]. Gu Wenxiang, Zhou Jun. A New Resolution Theory of Fuzzy Sets, Journal of Northeast Normal University, 2,1995, 6-7. (In Chinese)