Schein Decomposition of a F-matrix

Wang Jinbao

Fushun, Liaoning, China, fushun Petrochemical College Post code 113001

Abstract: the definition of Schein decomposition of a F-matrix was given in this paper. Principally, we were proved the following results:

let $A \in M(m \times n)$, $B \in M(m \times p)$ and $C \in M(p \times q)$ are non-zero.

- (1) if $F \in M(m \times s)$ and $G \in M(s \times n)$ are a pair Schein decomposition matrices of A, then FP_s and P_s^TG are also a pair Schein decomposition matrices of A.
 - (2) $\rho_s(P_m A) = \rho_s(A), \rho_s(AP_n) = \rho_s(A).$
 - (3) $\rho_s(ABC) \le \rho_s(A)$; $\rho_s(ABC) \le \rho_s(B)$; $\rho_s(ABC) \le \rho_s(C)$.

Keyword: Schein rank, Schein decomposition, Permutation matrix.

Definition 1^[2] Let $A \in M(m \times n)$ are non-zero. The Schein rank ρ_s of matrix A is the least number of rank 1 matrices whose sum is A, where $M(m \times n)$ is a set of all $m \times n$ F-matrices.

Definition 2 let $A \in M(m \times n)$ are non-zero, and $\rho_s(A) = s$, and let

$$A = \begin{bmatrix} c_{11} \\ \cdots \\ c_{m1} \end{bmatrix} (d_{11} \cdots d_{1n}) + \cdots + \begin{bmatrix} c_{1s} \\ \cdots \\ c_{ms} \end{bmatrix} (d_{s1} \cdots d_{sn})$$

$$= \begin{bmatrix} c_{11} & \cdots & c_{1s} \\ \cdots & \cdots & \cdots \\ c_{m1} & \cdots & c_{ms} \end{bmatrix} \begin{bmatrix} d_{11} & \cdots & d_{1n} \\ \cdots & \cdots & \cdots \\ d_{s1} & \cdots & d_{sn} \end{bmatrix} = C_{m \times s} D_{s \times n}$$

$$(**)$$

where all $c_{ij} \in [0,1]$ and $d_{ij} \in [0,1]$, and $C=(c_{ij})_{m \times s}$ and $D=(d_{ij})_{s \times n}$ are non-zero.(\times) is called a Schein decomposition of A. And C and D are called a pair matrices of Schein decomposition of A.

Theorem 1. Let $A \in M(m \times n)$ are non-zero. If there exist a pair non-zero F-matrices $C_{m \times k}$ and $D_{k \times n}$ such that $A = C_{m \times k}$ $D_{k \times n}$ then $\rho_s(A) \leq k$.

The some columns of a s-order unit square matrix I_s are exchanged, we shall get a matrix P whose is called a permutation matrix. And $I_s(i,j)$ is a permutation matrix that column i and column j of a unit square matrix I_s are exchanged.

By proposition 1,2 and theorem 1.1 in reference [2] we get that **Lemma 1** $I_s(i,j) I_s(i,j) = I_s$.

Theorem 2 Let $A \in M(m \times n)$ are non-zero. If $C \in M(m \times s)$ and $D \in M(s \times n)$ are a pair matrices of Schein decomposition of A, then $C I_s(i,j)$ and $I_s(i,j)$ D are also a pair matrices of Schein decomposition of A.

Its image narration is that

Theorem 2'. Let $A \in M(m \times n)$ are non-zero. If $C \in M(m \times s)$ and $D \in M(s \times n)$ are a pair matrices of Schein decomposition of A, column i and column j of C are exchanged, we shall get C^* , at the same time row i and row j of D are exchanged, we shall get D^* , then C^* and D^* are also a pair matrices of Schein decomposition of A.

Lemma 2.^[2] $PP^T = P^T P = I_h$, where P is any h-order permutation matrix.

Theorem 3. Let $A \in M(m \times n)$ are non-zero. If $C \in M(m \times s)$ and $D \in M(s \times n)$ are a pair matrices of Schein decomposition of A, where P is any s-order permutation matrix..

Theorem 4. Let $A \in M(m \times n)$ are non-zero symmetrical matrix. If $C_{n \times s}$ and $D_{s \times n}$ are a pair matrices of Schein decomposition of A, then D^{T} and C^{T} are also a pair matrices of Schein decomposition of A.

Theorem 5. Let $A \in M(m \times n)$ are non-zero. If $\rho_s(A) = s$, then $\rho_s(I_m(i,j)A) = s$ and $\rho_s(AI_m(i,j)) = s$.

The image narration of the theorem is

Theorem 5' Let $A \in M(m \times n)$ are non-zero matrix, and $\rho_s(A) = s$.

- (1) Row i and row j of A are exchanged, we shall get A^* , then $\rho_s(A^*)=s$.
- (2) Column *i* and column *j* of A are exchanged, we shall get A^* , then $\rho_s(A^*)=s$.

Theorem 6 Let $A \in M(m \times n)$ are non-zero. If $\rho_s(A) = s$, then $\rho_s(P_m A) = s$, $\rho_s(AP_n) = s$.

The image narration of the theorem is

Theorem 6'. Let $A \in M(m \times n)$ are non-zero matrix, and $\rho_s(A) = s$.

- (1) The some rows of A are exchanged, we shall get a matrix A^* then then $\rho_*(A^*)=s$.
 - (2) The some columns of A are exchanged, we shall get a matrix A*

then then $\rho_s(A^*)=s$.

We can spread a property of Schein rank in reference [1] $\rho_s(AMB) \le \rho_s(M)$.

Theorem 7. If $A_1 \in M(m_1 \times m_2)$, $A_2 \in M(m_2 \times m_3)$, $A_i \in M(m_i \times m_{i+1})$, $A_k \in M(m_k \times m_{k+1})$ are some non-zero fuzzy matrices, then $\rho_s(A_1 \cdots A_i \cdots A_k) \leq \rho_s(A_i)$ (i=1, ..., k).

Proof. Let $\rho_s(A_i)$ =s,and Schein decomposition of A_i is $A_i = C_{m_i \times s} D_{s \times m_{i+1}}$ then

$$A_1 \cdots A_i \cdots A_k = (A_1 \cdots A_{i-1} C)_{m_1 \times s} (DA_{i+1} \cdots A_k)_{s \times m_{k+1}} \text{ therefore}$$

$$\rho_s(A_1 \cdots A_i \cdots A_k) \le s = \rho_s(A_i) (i=1, \cdots, k) \text{ i.e. } \rho_s(A_1 \cdots A_i \cdots A_k) \le \rho_s(A_i).$$

References

- [1] K H Kim & F W Roush, Generalized fuzzy matrices, FSS, 1980(4):293-315
- [2] Wang Hongxu, Invertible fuzzy matrix, J.Liaoyang Petrochemical college, 1989(3):1-5.