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In this paper we introduced the concept of prime space of lattice implication algebra, in which
we analysised its topological property and discussed the relation between the category of
topological space and the category of lattice implication algebras.

1. Introduction

People have paid more attention to lattice logic system, which will become much
logical system for interlligent computer. In reference [1] Xu Yang present an algebra
structure — lattice implication algebra by combing the lattice with implication
algebra as truth values domain of lattice valued logical system. After that, we study
the implication homomorphism, congruence relations and algebraic structure of
lattice implication algebra and discuss the first order logical system FM based on
lattice implication algebras, and obtained several importance resuits. The implication
filter, which derived from modus ponens in logic, play an important role in lattice
implication algebra. The purpose of this paper is as follows: After discussing the
prime implication filter of lattice implication algebra, we introduced the concept of
prime space of lattice implication algebra, in which we analysised its topological
properties and discussed the relation between the category of topological space and
the category of lattice implication algebras.

2. Preliminary concepts

Definition 2.1 Let (L, v, A, ") be a complemented lattice with the universal bounds
0,1, »: L x L~ Lbeamapping. (L, v, A,', —)is called a lattice implication
algebra''! (shortly as LIA) if the following conditions hold for any x, y, zeL ;

Wx=@=2)=y-~@x=-2)

(ID)x—-x=1

(I)x~y=y-x

(Iyx=y=y-x=I>x>y

Yx=»=y=@¢-x~x

k) Gvy) =z =(x = DAY = 2)

* The work was partially supported by the National Natural Science Foundation of P.R.China with
Grant No. 69674015 and 69774016



k) Gry)= z =(x = V(Y = 2)

Definition 2.2 Let(L,v,A,’, =)be alattice implication algebra. JcL is said
to be a implication filter of L, if it satisfies the following conditions:

(D 1eLl.

(2) For all, x, yeL, if x and x—>yeL, then yeL.

Properties of LIA ds concerned can be seen in reference [1-2].

Definition 2.3 Let (L, A, v, ’, —») be a lattice implication algebra, F be a
proper implication filter of L. If for arbitrary @, b €L, avbeF implies aeF or beF.
Then F is called as prime implication filter of L.

Let F(L) denote all implication filters of lattice implication algebra L , and PF(L)
denote all prime implication filters of L. We have known that (F(L), A, V) is a
complete distributive lattice, where for arbitrary 4, Be F(L), AAB=ANB, AvB=[AUB)
(the smallest implication filter including 4UB).

Theorem 2.1 Let FeF(L) - {L}. Then FePF(L) if and only if for arbitrary a,
bel, a-»beF or b—>acF.

Proof. Let FePF(L). For arbitrary a, bel, since (a—>b)v(b—a)=leF, so
a—beF or b>aeF,

Conversely, for arbitrary a, beL, assume that avbeF. If a—>beF,; then from
(a-»b)->b=avbeF, and note that F is a implication filter, we have beF ; Similarly,
b—aeF implies ae F, hence FePF(L). .

Theorem 2.2 Let FePF(L). Then for arbitrary aeL, at most one of q and &'
belongs to F.

Remark If gel is a Boolean element, i. e. ava’™=Il, and if FePF(L), then the
only one of a and ' belongs to F.

Theorem 2.3 Let FeF(L), aeL but agF. Then there exists P, ePF(L), such
that ag P, and FcP, .

Proof. Let A={P; PeF(L) and agP, F<P}. Since Fe4, so A=J. By using of
Zorn lemma, it is easy to prove that : There exists maximal element in 4 in the
including order “c” . Let P, be a maximal element of 4. Then agP,eF(L). In
the following, wwill prove that P, is a prime implication filter. It is enough to prove
that for arbitrary x, yeL, if xvyeP,,, then xeP, oryeP,.

In fact, because xvye P,, we can obtain that

[Pav {x}) N [P {y})=Ps.
From agP,,, we know that: ag[P, U {x}) or ag[P, v {y}). Moreover since P, is a
maximal element, we have: [P, {x})=P,or [P, U {y})=P,, i.e,xeP, oryeP,.

Corollary 2.1 For arbitrary aeL and a#l, there exists PePF(L), such that
agP,
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3. Prime space of lattice implication algebras

Let L be a lattice implication algebra. For arbitrary aeL, Denote X,={F|FePF(L),
agF}. And let X={X,| ael}.
From Corollary 2.1, we know that: If a1, X, #¢. And obviously X;=¢, Xo=PF(L).
Lemma 3.1 X, =PF(L). : '

ael.

Proof. For arbitrary FePF(L), since F is a proper implication filter, we know
that there exists ael such that agF, so FeX,c UX,. It following that

ael
PF(L)c U X, . And obviously |JX, =PF(L).Hence |JX, =PF(L).
ael .

ael . ael.

- From Lemma 3.1, X={X,| aeL} is a covering of PF(L). Then by taking X as a
subbase we can introduce a topology 3 on PF(L), such that ( PF(L), 3 ) become a
topological space. We call it as prime space of L. In the following, we will discuss
the structure and properties of this topological space.

For arbitrary FeF(L), Let F = {P|P ePF(L),F & P}.
Lemma 3.2 1. For arbitrary ael, i;; =X, .
2. For arbitrary M, NeF(L), MAN=MAN.
3. For arbitrary G,eF(L), AeT, ZE = }EJFE; .

Proof. 1. For arbitrary PePF(L), since [a)zP if and only if a¢ P, so [@=4X, .
2. For arbitrary PePF(L), let MzP, NzP. Then there exist me M, neN such that
. m, ngP, and notice that P is a prime implication filter, M and N is implication filter,
we have: mvne MnN. Hence MnNaP, Pe M~ N, that is, MANcCMAN. The
opposite inclusion is obvious. Consequently, MAN=MAN.

3. For arbitrary PePF(L), if for every Lel', GogP, then A G, c P, that is,

if v G, ¢ P, there exists Apel’ such that G,&P. So v G, ¢ UG, - And the
iel Ael Aer
opposite inclusion is obvious. Consequently, v G, = UG, .
Ael Ael

Lemma3.3 Let FeF(L). ThenaeF if and only if X, cF.

Proof. If acF, then for arbitrary PeX,, agP. It follows that PF, P eF . So
X, F . If agF, from Theorem 2.3, there exists P,e PF(L) such that ag P, and FGP,,

so P,eX, but P,¢ F.Hence X, cF , thatis, if X, c F, it must have aeF.

Theorem 3.1 For arbitrary FeF(L), F isan open set of prime space (PF(L),
), and every open set of prime space can be uniquely expressed as the form of F .
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Proof. At first, for arbitrary FeF(L), F= v (a). And it follows from
Lemma 3.2 that: F = v a)= Ufa—)= UxX, 3. .
aeF aeF aeF

Moreover, from [a)n[b)=[avb) and Lemma 3.2, it is easy to see that F is just
the arbitrarily union of finitely inter section of the subsets of {X,| aeF}. It means

that {{.PlPeF(L)} are just right open set_ families of prime space, that is
3={PPer(L)}. |

Then we prove the expression of open set is unique. In fact, from Lemma 3.3,
for arbitrary FeF(L), acF if and only if X, c F.Soif F= P, then we have aeF

if and only if X,c F = P if and only if aeP, that is, F=P.
Theorem 3.2 X, is the only compact-open set of prime space.
Proof. From the definition, X, is a open set. To prove compact, in view of

Theorem 3.1 we may assume that {5|G L €F(L), A eI‘} is a arbitrary open covering
of X,,ie. X, g‘L€Jr5:=‘\E/rGA .
From Lemma 3.3, we know a €V G, . Moreover, according to the structure of

generated implication filter, we know that there exists finite subset [',cI” such that
ae v G,.ByLemma 3.3, X,c v G = JG, . This means that X, is a compact
Ael Aelr 1 iel

set.
Now, we assume that F(FeF(L)) is arbitrary a compact-open set. Since
F= UX,, so {X, | aeF} is a open-covering of F . 1t follows that there exist aj,
aeF

Ay, e ene , @y €F such that

F=0x, =Ul@=Via)=[ra)=X

i=1 i=1

Consequently, X, is the only one compact-open set.

Theorem 3.3 X={X,|aeL} is the open-set base of prime space.
Because of X,=PF(L) and that .X; is a compact set, we have:
Theorem 3.4 Prime space is a compact space.

Theorem 3.5 For arbitrary PePF(L), there must have cl/({P})=PF(L) -P in
prime space, where cl({P}) expresses the closure of single element set {P}.

Proof. Let note that Qe ci({P}) if and only if every neighborbood of O
contains P. And X={X,| acL} is a base, so the neighborbood can be limited to X, ,
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and, hence '

cl({P}) ={Q|QePF(L) and for every acL, QeX, implies PeX,}
={0|0<PF(L) and for every aeL, aEQ implies ag P}
={0|Qe PF(L) and PcQ}
=PF(L)- P

Theorem 3.6 Prime space is a T, ~space.

4. The category of lattice implication algebras and that of topological spaces

We denote lattice implication algebra as LIA!", topological space as TOP!™. For
arbitrary A€LIA, let 7, denote the prime space of 4, that is, T,=PF(4).

Lemma 4.1 Let 4, BeLIA, FeHom(4, B). If FePF(B), then f~ ' (B)={x|xeA
and fix)e B} ePF(A).

In view of Lemma 4.1, we may. definite the following mappings T between the
category LIA and the category TOP:

The correspond between the objects: T{A)=/,, AcLIA.

The correspond between the arrows-sets: for arbitrary A, BeLIA, for arbitrary
feHom(4, B), T(f): 'g—>-4,

[,

Lemma 4.2 Let 4, BeLlA, feHom(4, B). Then T{f)eHom(/,, /g).

Proof. To prove F(f)eHom(Og, O,), that is, T(f) is a countinous mapping from
Ts to Ta.. It is enough to prove that for arbitrary aed, (Tf))"' (X, )eT, where T
express the family of open sets of prime space. In fact, PeX; 4 if and only if fa)¢P
if and only if aef ™' (P) if and only if ™! (P)eX, if and only if Pe(F(f))” '(Xy). It
follows that (F(f) )~ ' (X=Xt e Ts. -

It is easy to prove that T{f)°T(g)=T(F°g) and F(I,)=I¢ a,. Hence:

Theorem 4.1 7T is a contravariant functor from LIA to TOP, and F is a
covariant functor from LIA®® to TOP.
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