Fuzzy Weakly Urysohn Spaces

Xiao Jia-Hong

Department of Mathematics, Lingling Teachers' College, Yongzhou Hunan 42500 China

Abstract

In this paper, we introduce the concept of fuzzy weakly Urysohn space and establish some of its properties in fuzzy topological spaces.

Key words: Fuzzy topological spaces, Fuzzy weakly Urysohn spaces, Fuzzy strongly semiopen sets, Romote-neighborhoods.

1 Introduction

In 1968, Chang first established the concept of fuzzy topological spaces [4] based on Zadeh's concept of fuzzy sets [10]. Later Pu and Liu introduced the concept of the Q-neighborhood [6] and Wang introduced the concept of the remote-neighborhood [8]. Since this fuzzy topology has developed considerably. Chen generalized the Urysohn space [3] to the fuzzy topological spaces in [5]. In this paper we introduce the concept of fuzzy weakly Urysohn space with the help of the remote-neighborhood [8] and the fuzzy strong semiinterior of fuzzy sets [1]. It is observed that

fuzzy Urgsohn space

- ⇒ fuzzy weakly Urysohn space
- ⇒ fuzzy Hausdorff space [8].

2 Preliminaries

In this paper, (X, δ) will denote a fuzzy topological space. A^0, A^- and A' will denote respectively the interior, closure and complement of the fuzzy set A.

Definition 2.1 [8]. Let (X, δ) be a fuzzy topological space, e be a fuzzy point, $P \in \delta'$ and $e \not\leq P$. Then P is called a remote-neighborhood of e, and the set of all remote-neighborhood of e will be denoted by $\eta(e)$.

Definition 2.2 [8]. A fuzzy topological space (X, δ) is called fuzzy Hausdorff if for every pair of fuzzy points x_{α} and y_{λ} with $x \neq y$ there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$ such that $P \cup Q = 1$.

Definition 2.3 [5]. A fuzzy topological space (X, δ) is called fuzzy Urysohn if for every pair of fuzzy points x_{α} and y_{λ} with $x \neq y$ there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$ such that $P^0 \cup Q^0 = 1$.

Definition 2.4 [1]. Let A be a fuzzy set of a fuzzy topological space (X, δ) . A is called fuzzy strongly semiopen iff there is a $B \in \delta$ such that $B \leq A \leq B^{-0}$. A is called fuzzy strongly semiclosed iff there is a $B \in \delta'$ such that $B^{0-} \leq A \leq B$. $A^{\triangle} = \bigcup \{B | B \leq A, B \text{ fuzzy strongly semiopen}\}$ and $A^{\sim} = \cap \{B | B \geq A, B \text{ fuzzy strongly semiclosed}\}$ are called the strongly semiinterior and the strongly semiclosure of A, respectively.

3 Fuzzy weakly Urysohn spaces

Definition 3.1. A fuzzy topological space (X, δ) is called a fuzzy weakly Urysohn space if for every pair of fuzzy points x_{α} and y_{λ} with $x \neq y$ there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$ such that $P^{\triangle} \cup Q^{\triangle} = 1$.

Obviously, every fuzzy Urysohn space is a fuzzy weakly Urysohn space and every fuzzy weakly Urysohn sapce is a fuzzy Hausdorff space.

Theorem 3.2. A fuzzy topological space (X, δ) is a fuzzy weakly Urysohn space iff for every pair of fuzzy points x_{α} and y_{λ} with $x \neq y$ and $\alpha, \lambda \in [0, 1)$, there exist $V \in \delta, W \in \delta$ so that $x_{\alpha} \in V, y_{\lambda} \in W$ and $V^{\sim} \cap W^{\sim} = 0$.

Proof. Let (X, δ) be a fuzzy weakly Uryshon space, x_{α} and y_{λ} be two fuzzy points in X with $x \neq y$ and $\alpha, \lambda \in [0, 1)$. Choose two real numbers s and t satisfying $0 < s < 1 - \alpha$ and $0 < t < 1 - \lambda$. Then there are romote-neighborhoods $P \in \eta(x_s)$ and $Q \in \eta(y_t)$ such that $P^{\triangle} \cup Q^{\triangle} = 1$. Put V = P' and W = Q'. Then $V \in \delta, W \in \delta$, and $x_{\alpha} \in V, y_{\lambda} \in W$ and

$$V^{\sim} \cap W^{\sim} = P'^{\sim} \cup Q'^{\sim} = P^{\triangle i} \cap Q^{\triangle i} = (P^{\triangle} \cup Q^{\triangle})' = 0.$$

Conversely, let the given condition hold. Suppose x_{α} and y_{λ} are two fuzzy points with $x \neq y$. Choose two real numbers s and t satisfying $1 - \alpha < s < 1$ and $1 - \lambda < t < 1$. In the light of the assumption, there exist $V \in \delta$, $W \in \delta$ so that $x_s \in V$, $y_t \in W$ and $V^{\sim} \cap W^{\sim} = 0$. Put P = V' and Q = W'. Then $P \in \eta(x_{\alpha})$, $Q \in \eta(y_{\lambda})$ and

$$P^{\triangle} \cup Q^{\triangle} = V'^{\triangle} \cup W'^{\triangle} = V^{\sim \prime} \cup W^{\sim \prime} = (V^{\sim} \cap W^{\sim})' = 1.$$

Hence (X, δ) is a fuzzy weakly Urysohn space.

Definition 3.3. Let (X, δ) be a fuzzy topological sapee, e be a fuzzy point and $S = \{S(n), n \in D\}$ a fuzzy net [8] in X. Then e is said to be a w-limit point of S (or S w-converges to e) if S is eventually not in P^{\triangle} for each $P \in \eta(e)$.

Theorem 3.4. A fuzzy topological space (X, δ) is a fuzzy weakly Urysohn space iff no fuzzy net in X can w-converge to two fuzzy points x_{α} and y_{λ} with $x \neq y$.

Proof. Let (X, δ) be a fuzzy weakly Urysohn space, $S = \{S(n), n \in D\}$ be a fuzzy net in X which w-converges to a fuzzy point x_{α} , and y_{λ} be another fuzzy point with $x \neq y$. Then there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$ such that $P^{\triangle} \cup Q^{\triangle} = 1$. Since S is eventually not in P^{\triangle} , therefore, S is eventually in Q^{\triangle} .

Hence S does not w-converge to y_{λ} .

Conversely, assume that the condition is true and that x_{α} and y_{λ} are two fuzzy points with $x \neq y$. If for every $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda}), P^{\triangle} \cup Q^{\triangle} \neq 1$, then there exists a fuzy point $S(P,Q) \notin P^{\triangle} \cup Q^{\triangle}$. Take

$$S = \{S(P,Q) : (P,Q) \in \eta(x_{\alpha}) \times \eta(y_{\lambda})\},\$$

then S is a net in X with the following relation:

$$(P_1, Q_1) \leq (P_2, Q_2)$$
 iff $P_1 \subset P_2$ and $Q_1 \subset Q_2$

where $(P_1, Q_1), (P_2, Q_2) \in \eta(x_\alpha) \times \eta(y_\lambda)$. Obviously, S is eventually not in P^{\triangle} , so S w-converges to x_α . Similarly, S w-converges to y_λ as well. This contradicts the hypothesis. Consequently, there are $P \in \eta(x_\alpha)$ and $Q \in \eta(y_\lambda)$ such that $P^{\triangle} \cup Q^{\triangle} = 1$. Thus (X, δ) is a fuzzy weakly Urysohn space.

Definition 3.5. A fuzzy topological space (X, δ) is called strongly semi-interior additive if $(A \cup B)^{\triangle} = A^{\triangle} \cup B^{\triangle}$ for any two fuzzy sets A and B in X.

Theorem 3.6. If (X, δ) is a Hausdorff and strongly semiinterior additive fuzzy topological space, then (X, δ) is a fuzzy weakly Urysohn space.

Proof. Let x_{α} and y_{λ} be two fuzzy points in (X, δ) with $x \neq y$. According to Definition 2.2, there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(y_{\lambda})$ such that $P \cup Q = 1$. Since (X, δ) is strongly semiinterior additive,

$$P^{\triangle} \cup Q^{\triangle} = (P \cup B)^{\triangle} = 1.$$

Hence (X, δ) is a fuzzy weakly Urysohn space.

Lemma 3.7. Let $f:(x, \delta) \mapsto (Y, \tau)$ be a fuzzy homeomorphic mapping [9, 10] from a fuzzy space (X, δ) to another fuzzy space (Y, τ) . If A is a fuzzy strongly semiopen set of (X, δ) , then f(A) is a strongly semiopen set of (Y, τ) .

Proof. Let A be a fuzzy strongly semiopen set of (X, δ) . Then there is a $B \in \delta$ such that $B \le A \le B^{-0}$. Hence

$$f(B) \le f(A) \le f(B^{-0}).$$

Since f is a fuzzy homeomorphic mapping, $f(B) \in \tau$ and

$$f(B^{-0}) = (f(B))^{-0}$$

i.e., there is a $f(B) \in \tau$ such that

$$f(B) \le f(A) \le (f(B))^{-0}.$$

Thus f(A) is a fuzzy strongly semiopen set of (Y, τ) .

The following theorem shows that the fuzzy weakly Urysohn's separation is fuzzy homeomorphic invariance.

Theorem 3.8. Let $f:(x, \delta) \mapsto (Y, \tau)$ be a fuzzy homeomorphic mapping from a fuzzy weakly Urysohn space (X, δ) to another fuzzy space (Y, τ) . Then (Y, τ) is also a fuzzy weakly Urysohn space.

Proof. Let y_{α} and y_{λ}^{*} be two fuzzy points in (Y, τ) with $y \neq y^{*}$. Then there are two fuzzy points x_{α} and x_{λ}^{*} in (X, δ) with $x \neq x^{*}$ such that $f(x_{\alpha}) = y_{\alpha}$ and $f(x_{\lambda}^{*}) = y_{\lambda}^{*}$. Since (X, δ) is a fuzzy weakly Urysohn space, there are $P \in \eta(x_{\alpha})$ and $Q \in \eta(x_{\lambda}^{*})$ such that $P^{\triangle} \cup Q^{\triangle} = 1_{X}$. Because f is fuzzy homeomorphic, we have $f(P) \in \eta(y_{\alpha})$ and $f(Q) \in \eta(y_{\lambda}^{*})$. By lemma 3.7

$$(f(P))^{\triangle} \cup (f(Q))^{\triangle} \geq (f(P^{\triangle}))^{\triangle} \cup (f(Q^{\triangle}))^{\triangle}$$

$$= f(P^{\triangle}) \cup f(Q^{\triangle})$$

$$= f(P^{\triangle} \cup Q^{\triangle})$$

$$= f(1_X)$$

$$= 1_Y.$$

Thus (Y, τ) is a fuzzy weakly Urysohn space.

References

- [1] Bai Shi-Zhong, Fuzzy strongly semiopen sets and fuzzy strong semicontinuity, Fuzzy Sets and Systems 52(1992) 345-351.
- [2] Bai Shi-Zhong, Q-convergence of nets and weak separation axioms in fuzzy lattices, Fuzzy Sets and Systems 88(1997)379-386.
- [3] M.P.Berri, J.R.Porter and R.M.Stephenson, Jr., A survey of minimal topological spaces, Greneral Topology and its Relations to Modern Analysis and Algebra. III, Academia, Prague, 1971, 93-114.
- [4] C.L. Chang, Fuzzy topological spaces, J.Math. Anal. Appl. 24(1968) 182-190.
- [5] Chen Shui-Li, Fuzzy Urysohn spaces and α-stratified fuzzy Urysohn spaces, Fifth IFSA world congress (1993) 453-456.
- [6] Pu Bao-Ming and Liu Ying-Ming, Fuzzy topology I, J.Math. Anal. Appl. 76(1980)571-599.
- [7] Pu Bao-Ming and Liu Ying-Ming, Fuzzy topology II, J.Math. Anal. Appl. 77(1980), 20-37.
- [8] Wang Guo-Jun, A new fuzzy compactness defined by fuzzy nets, J.Math.Anal.Appl. 94(1983)1-23.
- [9] Wang Guo-Jun, Theory of L-fuzzy topological spaces, Pross of Shaanxi Normal University, Xian, 1988.
- [10] L.A.Zadeh, Fuzzy sets, Inform. and Control 8(1965)338-353.