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Abstract

In this paper, we introduce the concept of fuzzy weakly Urysohn space and

establish some of its properties in fuzzy topological spaces.
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1 Introduction

In 1968, Chang first established the concept of fuzzy topological spaces
[4] based on Zadeh's concept of fuzzy sets [10]. Later Pu and Liu introduced
the concept of the Q-neighborhood [6] and Wang introduced the concept of the
remote-neighborhood [8] . Since this fuzzy topology has developed considerably.
Chen generalized the Urysohn space [3] to the fuzzy topological spaces in [5].In
this paper we introduce the concept of fuzzy weakly Urysohn space with the help
of the remote-neighborhood [8] and the fuzzy strong semiinterior of fuzzy sets [1].
It is observed that

fuzzy Urgsohn space
=> fuzzy weakly Urysohn space
=> fuzzy Hausdorff space [8].
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2 Preliminaries

In this paper, (X, §) will denote a fuzzy topological space. A% A~ and A’ will

denote respectively the interior, closure and complement of the fuzzy set A.

Definition 2.1 [8]. Let (X, §) be a fuzzy topological space, e be a fuzzy
point, P € §' and e £ P. Then P is called a remote-neighborhood of e, and the
set of all remote-neighborhood of e will be denoted by n(e).

Definition 2.2 [8]. A fuzzy topological space (X, §) is called fuzzy Hausdorff
if for every pair of fuzzy points T, and yx with 2 # y there are P € n(z4) and
Q € n(ya) such that PUQ = 1. ‘

Definition 2.3 [5]. A fuzzy topological space (X, §) is called fuzzy Urysohn
if for every pair of fuzzy points z, and y, with ¢ # y there are P € n(z,) and
Q € n(y») such that PPUQ = 1.

Definition 2.4 [1]. Let A be a fuzzy set of a fuzzy topological space (X, 8).
A is called fuzzy strongly semiopen iff there is a B € é such that B < A < B-°.
A is called fuzzy strongly semiclosed iff there is a B € &' such that B~ <AL
B. A® = U{B|B < A, B fuzzy strongly semiopen} and A~ = N{B|B > A, B
fuzzy strongly semiclosed} are called the strongly semiinterior and the strongly

semiclosure of A, respectively.

3 Fuzsy weakly Urysohn spaces

Definition 3.1. A fuzzy topological space (X, ) is called a fuzzy weakly

Urysohn space if for every pair of fuzzy points zo and ya with = # y there are
P € (o) and Q € n(yx) such that PAU Q4 = 1.

Obviously, every fuzzy Urysohn space is a fuzzy weakly Urysohn space and

every fuzzy weakly Urysohn sapce is a fuzzy Hausdorft space.
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Theorem 3.2. A fuzzy topoliogical space (X, &) is a fuzzy weakly Urysohn
space iff for every pair of fuzzy points T, and y) withz # y and o, X € [0,1),
there exist VESW €b sothatz, EV,pn EW and V' AW~ = 0.

Proof. Let (X, §) be a fuzzy weakly Uryshon space, z, and y, be two
fuzzy points in X with z # y and a, X € [0,1). Choose two real numbers s and ¢
satisfying 0 < s <1—a and 0 < t < 1—A. Then there are romote-neighborhoods
P € n(z,) and Q@ € n(w) such that PPUQA =1. Put V=P and W = Q".
Then V€ 6§,W € 6, and ¢, € V,yr € W and

Vv aw~r =P~UuQ@"~ =P¥nQ@¥=(P2UQ?) =0.

Conversely, let the given condition hold. Suppose z, and ya are two fuzzy
points with  # y. Choose two real numbers s and ¢ satisfying 1l —a < s <1 .
and 1 — A < t < 1. In the light of the assumption, there exist V € §, W € ¢
sothat z, e V,yy e W and V" NW"~ = 0. Put P = V' and Q = W'. Then
P € n(z4),Q € n(y») and

PAUQt=VRUW" =V UW™ =(V'nW") =1.

Hence (X, ) is a fuzzy weakly Urysohn space.

Definition 3.3. Let (X, §) be a fuzzy topological sapce, e be a fuzzy point
and S = {S(n),n € D} afuzzy net [8] in X. Then e is said to be a w-limit point

of § (or § w-converges to ¢ ) if S is eventually not in P2 for each P € n(e).

Theorem 3.4. A fuzzy topological space (X, &) is a fuzzy weakly Urysohn
space iff no fuzzy net in X can w-converge to two fuzzy points z, and yx with

T#y.

Proof. Let (X, §) be a fuzzy weakly Urysohn space, § = {S(n),n € D}
be a fuzzy net in X which w-converges to a fuzzy point z,, and y, be another
fuzzy point with £ # y. Then there are P € n(zq) and @ € n(ya) such that

P2UQ® =1. Since S is eventually not in P2, therefore, S is eventually in Q2.
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Hence S does not w-converge to y,.
Conversely, assume that the condition is true and that z, and ya are two fuzzy

points with z # y. If for every P € n(za) and Q € n(ya), P2 U @4 # 1, then
there exists a fuzy point S(P, Q) € P2 U Q4. Take

S ={S(P,Q): (P, Qj € 7n(za) X (1)},

then § is a net in X with the following relation:

(P, Q1) <(P3, @) if PLCP; and Q1 C Qs

where (P, @1),(P2, Q2) € n(za) % 7(y2). Obviously, S is eventually not in P&
80 § w-converges to &o. Similarly, S w-converges to ya as well. This contradicts
the hypothesis. Consequently, there are P € 7(z,) and @ € n(ya) such that
P2 U Q? =1. Thus (X, §) is a fuzzy weakly Urysohn space.

Definition 3.5. A fuzzy topological space (X, §) is called strongly semi-
interior additive if (4 U B)® = A% U B® for any two fuzzy sets A and B in X.

L]

Theorem 3.6. If (X, §) is a Housdorff and strongly semiinterior additive
fuzzy topological space, then (X, §) is a fuzzy weakly Urysohn space.

Proof. Let z, and ya be two fuzzy points in (X, ) with £ # y. According
to Definition 2.2, there are P € 7(zq) and @ € n(y») such that PUQ = 1. Since

(X, &) is strongly semiinterior additive,

PAUQ®=(PUB)® =1
Hence (X, §) is a fuzzy weakly Urysohn space.
Lemma 3.7. Let f : (z, §) — (Y, 7) be a fuzzy homeomorphic mapping

[9, 10] from a fuzzy space (X, §) to another fuzzy space (Y, 7). If A is a fuzzy
strongly semiopen set of (X, §), then f(A) is a strongly semiopen set of (Y, 7).
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Proof. Let A be a fuzzy strongly semiopen set of (X, ). Then there is a
B € § such that B < A < B~° Hence

f(B) < f(A) < f(BT").
Since f is a fuzzy homeomorphic mapping, f(B) € 7 and

f(B=%)=(£(B))™",
i.e., there is a f(B) € 7 such that

1(B) < f(4) < (#(B)™".
Thus f(A) is a fuzzy strongly semiopen set of (Y, 7).

The following theorem shows that the fuzzy weakly Urysohn’s separation is

fuzzy homeomorphic invariance.

Theorem 3.8. Let f : (z, §) — (Y, 7) be a fuzzy homeomorphic mapping
Jfrom a fuzzy weakly Urysohn space (X, &) to another fuzzy space (Y, 7). Then
(Y, 1) is also a fuzzy weakly Urysohn space.

Proof. Let y, and y3 be two fuzzy points in (Y, 7) with y # y*. Then there
are two fuzzy points £, and z3} in (X, §) with = # z* such that f(za) = Y. and
f(23) = y3. Since (X, §) is a fuzzy weakly Urysohn space, there are P € n(zq)
and Q € n(«3) such that P2 U Q2 = 1x. Because f is fuzzy homeomorphic, we
have f(P) € 7n(y.) and f(Q) € n(y}). By lemma 3.7

(FPY2U(H@)® > (#(P2) u(£(@2)”
= f(P?)U f(@%)

F(PAUQ")

f(lx)

= ly.
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Thus (Y, 7) is a fuzzy weakly Urysohn space.
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