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HELLY’S THEOREM IN BANACH LATTICES
WITH ORDER CONTINUOUS NORMS.

CAMILLE DEBIEVE - MILOSLAV DUCHON - MICHEL DUHOUX

ABSTRACT. We present Helly and Helly-Bray theorems in the context of vector lat-
tices with order continuous norm. The corresponding generalized moment theorem
and a corollary on representation of positive operators are stated and proved.

1. Introduction

Helly’s theorem had been of some importance along time above all in the prob-
ability theory in connection with a problem of moments of distributions. As for
other applications, we shall return to them later.

Recall that in this connection, real-valued nondecreasing functions f on the
interval [a, 3] of the real line are considered and that the following facts are true
(see [7, Chapter 3]).

(1) The function f has at most countably many points of discontinuity on [a, 3].

(2) (Helly’s theorem) Given a uniformly bounded sequence (fn) of real-valued
nondecreasing functions on [a, 8], there exists a subsequence (fn, ) of (fn)
converging in some sense to a real-valued nondecreasing function f.

(3) (Helly-Bray theorem) Given a sequence (f,) of real-valued nondecreasing
functions on [a, B8], converging in some sense to a real-valued nondecreasing

function f, then for every continuous real-valued function g on [a, 8], we
have

b b
Jim [ g0) dralt) = [ att) arce

We shall investigate these three properties for functions f and f,, with values in
Banach lattices. We shall see that they do not remain true for any Banach lattice
and that we must confine ourselves to the narrower class of Banach lattices with
order continuous norm. Next we shall give two applications of these investigations :
a generalized moment theorem and a representation theorem.

2. Helly and Helly-Bray theorems

We recall that a Banach lattice E is said to have an order continuous norm if
lim, ||z«|| = 0, for every nonincreasing net (z,) in E such that 0 = inf z,.
As a part of [1, Theorem 12.9], we have the following result.

Proposition 1. The Banach lattice E has order continuous norm if and only if
each order interval in E is weakly compact. Moreover, a Banach lattice with order
continuous norm is necessarily Dedekind complete.
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The equivalence of (i) and (ii) in the next proposition is the main result of [8].

Note that we shall only use the implication (i) = (ii) (that is a direct application
of [9, III.2, Theorem 3)).

Proposition 2. Given a o-Dedekind complete Banach lattice E, the following
conditions are equivalent :

(i) E has order continuous norm ;

(ii) Every nondecreasing function f :[0,1] — E has at most countably many
points of discontinuity.

Proposition 3. For a nondecreasing function f defined on an interval I of R,
with values in a Banach lattice E with order continuous norm, and for z € I, the
following conditions are equivalent :

(i) f(z) =inf{f(y) |z <y €I};
(i) f is right-continuous at = for the norm topology ;
(iii) f is right-continuous at z for the weak topology.

We have a similar characterization for the left-continuity and, in particular, for
continuity.

Proof. (i) = (ii) is a direct consequence of the order continuity of the norm, (ii)
= (iii) is obvious and (iii) = (i) is due to the fact that the positive cone of E is
closed for the weak topology. O

Let us now state and prove an Helly’s theorem in the setting of Banach lattices.

Theorem 1 (Helly’s theorem). Let [a, 3] be a closed interval in R. For a Banach
lattice E, the following conditions are equivalent :

(1) E has order continuous norm ;

(2) If (fa)nen Is a sequence of nondecreasing functions on [a, 8], with values in
some order interval [a,b] in E, then there exists a subsequence (fp, )ken of (f) and
a nondecreasing function f : [a, 3] — [a,b] such that (fn, (z))ren is convergent to
f(z) for the weak topology o(E, E') at each continuity point = €)a, ([ of f, but
also for * = a and for z = (3.

Moreover, if E has order continuous norm, then the function f in (2) can be
assumed to be right-continuous at every point = €]a, f.

Proof. (1) = (2). Let (akx)ren be a dense sequence in [a, ] including o and
B. Since the order interval [a,b] is weakly compact (Proposition 1), the sequence
(fr) has a subsequence ( f,(,l)) such that ( f,(,l) (1))nen is weakly convergent to some
a; € [a,b] (by Eberlein-Smulian theorem [1, Th. 10.13]). By induction, for p =
2,3,..., the sequence ( Fir _l)) has a subsequence ( 7P ) such that ( £ (ap))nen is
weakly convergent to some a, € [a,b]. Using the well known diagonal process, we
define a subsequence (fp, )ken of (fn) by fn, = ,Ek). It is clear that the sequence
(fax (ap))ren is weakly convergent to a, (p = 1,2,...) and, the considered functions
being nondecreasing, that a, < a, implies a, < a,.

Recalling that E is Dedekind complete (Proposition 1), we now define a nonde-
creasing function f : [a, (] — [a,b] by

f(z) = inf{a, | z < a,}.
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It is clear that limi_ o0 fn, (z) = f(z) for o(E,E') if z = o or z = 8. Let us show
that this equality remains true for any z €]a, B[ such that f is continuous at z. To
this end, we recall first that the topological dual E’ of E is the set of all differences
of two positive linear functionals on E [1, Corollary 12.5]. Let ¢ be any positive
linear functional on E. For any a, < z, we have ¢(fa, (@) < ¢(fn,(z)) and, since
(fnx (ap))ken is weakly convergent to f(a,) = a,, we obtain :

#(f(o)) < limint o(fa (2)).

But {a; | ap <z} is a directed upwards set converging to = and, by continuity of
f at z, o(f(z)) is the limit of the net {¢(f(ap)) | ap < z}. It follows that.

¢(f(2)) < liminf o(fa,())
—00
and, similarly, by considering a, > z, we also obtain
lim sup ¢(fn, (2)) < @(f(2)).

We conclude that ¢(f(z)) = limi—o0 ¢(fni(2)) and, finally, that f(z) is the weak
limit of the sequence (fn, (z))ken.

To prove that we may assume f right-continuous at every point z €|a, ], it
suffices to replace f by the function g : [a, 8] — [a,b], defined by

{ g9(a) = f(a), 9(B) = f(B);

g9(z) =inf{f(y) |z <y €[a,B]} for z €]e,A[.

It is obvious that f < g, g is nondecreasing, right-continuous on e, [ and also that
f(z) = g(z) for some z €]ea, ] if and only if f is right-continuous at z. We now

show that f is continuous at z €]a, §[ if and only if g is continuous at z. If f is
continuous at =, we have successively

9(z) = f(z) = sup{f(y) | y <z} < sup{g(y) | y < =}
and, consequently,
9(z) =sup{g(y) |y < =}.
Conversely, if g is continuous at z, we then have :

f(z) < g(z) = 3121;9(3/) = sup (;rg f(Z)) < sup ( inf f(z)) < f(a).

y<z \y<i<z
Hence f(z) = g(z) and f is right-continuous at z. Moreover, by Proposition 2,

there exists an increasing sequence (y») in [a, 3], converging to z, such that f is
continuous at each y,. It follows that :

(@) = 9(a) = sup ( jnf, 7(2)) = sup f(4m) < sup 1 (1)
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We conclude that f(z) = sup,, f(y) and, finally, f is also left-continuous at z.

(2) = (1). If (2) is true, then for every order interval [a,b] in E, each sequence
in [a,b] must have a subsequence weakly converging to some point in [a, ], that
is [a,b] is weakly compact (by Eberlein-Smulian theorem again [1, Th. 10.13]). It
follows from Proposition 1 that E has order continuous norm. 0[O

Remark. The function g in the previous proof is not necessarily right-continuous
at a or left-continuous at 3, as shown by the following example Forn =1,2,.
define f, :[0,1] — [0, 1] by fa(z) =0if z € [0,2], fa(z) =1 ifz €]:,1- l[z«md
fa(z) = 1if z € [1 — 1,1]. In this case, the functxon g (Wthh coincide with f) is
clearly not right- continuous at 0, nor left-continuous at 1.

In order to consider a Helly-Bray theorem in the setting of Banach lattices,
we need to be able to integrate (as in [3]) some scalar functions with respect to
functions with values in a vector lattice. But, since in [3], only continuous scalar
functions are considered, we need the following lemma.

Lemma. Let [a,f] be a closed interval in R, E a o-Dedekind complete vector
lattice and f a nondecreasing function from [a, 3] into E. Let also o = 29 < z; <
... < zp = P, assume that f is order continuous at , ..., zp,—1, and consider a
function g : [, 8] — R such that

{ g(z) = comstanty; ifz € [zj—1,z[, (1<j<p);
9(8) = yp.

Then g is integrable with respect to f and

B8
/ () di(2) Zyj[fwj) F(z51)

Proof. For simplicity, we only prove that | 1 g(t) df(t) = v1[f(z1) — f(a)]. Given
any partition @ = z5 < zj < ... < z = z; of [a,21] and points ¢; € [z!._,,z!],
(1 <i<r), we have:

If (1) — f(zim0)] — nlf(z1) - f(@)]
lg(tr) — w1l [f(21) = f(7_1)] < 2 — wa|.[f(z1) = £(2724)]-

We now choose an increasing sequence (a,) in [a, z1[, converging to z;. Since f is
order continuous at z;, we have :

fz1) =sup{f(z) |a <z <21} = sup f(on).

Then e, = |y2 — y1]-[f(z1) — f(an)] is a nonincreasing sequence in E such that
inf, e, = 0. On the other hand, letting é, = z; — a, > 0, we see that

max (71 = 7iy) < 6 = vz — i [f(1) = f(@7-1)] < em.
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The proof is complete. [1

Theorem 2 (Helly-Bray theorem). Consider a closed interval [a, 8] in R, a Banach
lattice E with order continuous norm and an order interval [a, bl in E. Let (fn) be
a sequence of nondecreasing functions from [a, () into [a, b] and assume there exists
a nondecreasing function f : [, 8] —= [a,b] such that limp—yo0 fn(z) = f(z) for the
weak topology o(E, E') at each continuity point z €]a, 8[ of f, but also for z = a
and z = 3. Then, for each continuous function g : [a, 8] - R, we have

8 B
tm [“a0)drn®) = [ o0&, foro(B,B).

Proof. By Proposition 2, we know that f has at most countably many points of dis-
continuity. For p = 1,2,..., let a = a:(()p) < a:gp) < .. < xi’;) = g
be points of continuity of f, excepted perhaps a and B, such that
l9(z) = g(w)l < % if o,y € [6,2P), (1 < j < ky). Define g, on [a, 4] by
gp(z) = g(zgﬂ)l ifz € [zg-p_)l,mg-p)[, (1 £ j < kp) and g,(8) =lg(x§:;)_1). By the
above Lemma, we have

B kp
[ 90 da®) = 3 s - fale,)),

and this weakly converges in n to

kp 8
> =PI - FP = [ gptt)dfce

a

On the other hand, it follows from

/ﬂ( — g5)dfa| < =(b— a) and /ﬂ(g—g)df<3(b—é)
o I T I S o P T

L
p
that | s | s |

PE{I;L (9 —gp)dfn = plggofa (9—9p)df =0,

uniformly in n for the norm topology. The result follows. O

Corollary. With the same assumptions as in Theorem 2, we have also

8
tim [ 0dst = [ 0 dow), oro(5, B)

Proof. By the formula of integration by parts [3], we have

B8 B8
[ Fu(t)dg(t) = Fa(B)g(B) — Fala)g(a) — / o(t) dfa(t)

and similarly for [ : f(t)dg(t). The result follows from these equalities and Theo-
rem 2. O
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2. Applications

As in the classical case, we are now able to prove a moment theorem and to
deduce from it a representation theorem for operators on the space of continuous
functions on [0,1], by means of a nondecreasing function. Our proofs are easy
adaptations of the classical proofs. We include these proofs for sake of completeness.

Let us recall some definitions.

Definition 1. A function f defined on an interval [a, 8] in R, with values in a Ba-
nach lattice E, is said to have an (0)-bounded wvariation if there exists

u € E such that, for any partition (to,... ,t.) of [@, 3], the following inequality
holds :

- If(tia) = £(8:)] < w.

Note that a nondecreasing f has certainly an (o)-bounded variation.

Definition 2. A sequence (ai)xen in a Banach lattice E is a moment sequence if
there exists a function f :[0,1] — E, with (o)-bounded variation, such that for all
k, we have :

1
_ k
ar = /; t* df(t).

Definition 3. A sequence (ax)ien in a Banach lattice E is completely monotone
if for every pair of non-negative integers n, k, we have :

A"ay = Z(-—l)j (?)akﬂ- > 0.

§=0

Theorem 3 (Moment theorem). A sequence (ax)ken in a Banach lattice E with
order continuous norm is the moment sequence of a nondecreasing function f if and
only if the sequence (ax)reN is completely monotone.

Proof. It is clear that if the sequence (ax) is the moment sequence of a nonde-
creasing function f then the sequence (ax) is completely monotone.
Conversely, for n = 0,1,2, ..., let us define a function f, : [0,1] - E by the

formula : .
_ n\ \n—j, m—1m
falz) = E ( .>A a; for z €] — [

j=o N
(2 =Y (1) am s, £20) =0, £a(1) = a0
=0

The function f, is nondecreasing and has values in the order interval [0, ag] of E.
If we define the operator A on the space of polynomials by

A(Z cj:cj) = Z C;a;

j=0 j=0
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it is clear that the Bernstein polynomials
By,n(z) = Zn: (n) (l)k 2/ (1 — )"
j=o M/ AT
verify

A(Ba) = /O A

Using Theorem 1, we can choose a subsequence (fy, )ien of (f») and a nondecreasing
function f such that (fn:(z))ien weakly converges to f(z) at each continuity point
z €]0,1[ of f and for z = 0 and = = 1. By Theorem 2, for every k, we have :

1 1
lim [ t*dfa(t) = / tk df(t), for o(E, E").

t—00 0 0

We now show that lim,_00 A(Bk,n) = ai for the norm topology of E, and the
conclusion will follow. By classical algebraic computations, it is easy to show that
ap = A(Bop,») and that

n v . .
JU-1...(G-k+1) (Y  ,;
= A7 .
* szn(n—l)...(n—k+l) j %
Consequentely, we obtain :

- =3 (R - (1)) ()

Let y = {;, and observe that

j(j—l)---(j—k+1)_(J’)"='ﬁny—f "

nn—1)...(n—k+1) n

It follows that, given € > 0, there exists ng such that

JU-1)...(—k+1) i\F
n(n—1)...(n—k+1)"(‘) <e forn2ng

(ke (2)) ()

and

<e forn > no.
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It is also clear that

5() (2) o< (7)o

i=0
Now, it is easy to conclude that if n is large enough we have
lax — A(Bk,n)| < 2€ao,

which proves the theorem. [

Theorem 3 above improves the “Moment theorem” of [6] but is only a special
case of the “Moment theorems” of [4, 5]. Nevertheless the above proof is much
more elementary than those of [4, 5] because we only use an “Helly’s theorem” and
not a representation theorem of [2]. We conclude this paper by showing that the
representation theorem of [2], in the special setting of Banach lattices with order
continuous norm, is a corollary of the above Theorem 3.

Theorem 4 (Representation theorem). Every positive linear operator L on
C([a, B],R), with values in a Banach lattice E with order continuous norm, is
representable in the form

B
L) = [ 9) 4o,
where f is a nondecreasing function from [a, ] into E.

Proof. It is clear that it suffices to prove the result for the interval [0,1]. The

sequence (ax)ren defined by the formula ax = L(t*) is completely monotone. In
fact, we have

n

Aray = i (’;) Grsi = (’;) L(t*H) = L(t*(1 — )™) > 0.

By the preceeding theorem, there exists a nondecreasing function f such that

L(t*) = / 1 tF df(t)

and, by Weierstrass theorem, this equality extends to every continuous function.
We recall that a positive linear mapping from a Banach lattice into a normed vector
lattice is automatically continuous ({1, Theorem 12.3]). O
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