CONSTRUCTION OF JOINT OBSERVABLE FOR *l*-RING VALUED MEASURES

ADRIAN KACIAN

ABSTRACT. In this paper the product measure theorem for l-ring valued measures is proved. The idea of proof is based on a version of Alexandroff theorem. This result is applied to the existence of the joint observable for some types of observable

1. Introduction

Definition 1.1. An *l*-ring is a system $\mathcal{L} = (L, +, \cdot, \leq)$ with two binary operations $+, \cdot$ and partial ordering \leq such that following properties are satisfied:

- 1. (L, +) is Abelian group;
- 2. (L, \leq) is a lattice;
- 3. $a, b, c \in L$; $a \leq b \Rightarrow a + c \leq b + c$;
- 4. $: L^+ \times L^+ \to L^+$ is associative and commutative;
- 5. there is element $u \in L^+$ with $u \cdot a = a$ for all $a \in L^+$;
- 6. $a \cdot (b+c) = a \cdot b + a \cdot c$.

Example 1.2. Let (Ω, \mathcal{S}) be a measurable space and $\mathcal{F} = \{f; f : \Omega \to \mathbb{R}, f \text{ is measurable}\}$. Then $(\mathcal{F}, +, \cdot, \leq)$ with usual sum, product and partial ordering of functions is an l-ring.

Remark 1.3. We are going to work just with interval $[0, u] \subset \mathcal{L}$.

Remark 1.4. The notion l-ring is a generalization of notion MV-algebra in some case. By the Mundici representation theorem [3] each MV-algebra is isomorphic with an interval $[0, u] \subset G$, where G is a lattice ordered group (l-group). (It is easy to see that the first three points in the Definition 1.1 represent exactly the definition of an l-group.)

2. l-ring valued Alexandroff Theorem

This chapter is a generalization of the paper [1], where the semigroup valued Alexandroff theorem was introduced.

Lemma 2.1. Let G be an l-group, \mathcal{D} a semiring of subsets of a set, $s(\mathcal{D})$ the generated ring, $\lambda : \mathcal{D} \to G$ an additive mapping. Then there exists exactly one additive extension $\bar{\lambda} : s(\mathcal{D}) \to G$ of λ .

Proof. The complete proof is available in [1]. \Box

Key words and phrases. l-ring, product of measures, Alexandroff theorem, joint observable.

Typeset by $A_{\mathcal{M}}S$ -TEX

In the further Lemma the mapping $\lambda : \mathcal{R} \to G$, where \mathcal{R} be a ring, will be supposed to be monotone, subadditive and compact.

A mapping $\lambda : \mathcal{R} \to G$ is called to be:

- (1) monotone, if $A \subset B$; $A, B \in \mathcal{R}$ then $\lambda(A) \leq \lambda(B)$,
- (2) subadditive, if $\lambda(A \cup B) \leq \lambda(A) + \lambda(B)$ for every $A, B \in \mathcal{R}$.
- (3) A family \mathcal{C} of subsets of a set is to said to be *compact*, if it is closed under finite intersection and every decreasing sequence of non-empty sets of \mathcal{C} has a non-empty intersection.
- (4) A mapping $\lambda: \mathcal{R} \to G$ is said to be *compact*, if there is a compact family $\mathcal{C} \subset \mathcal{R}$ such that to every $E \in \mathcal{R}$ there are $C_n \in \mathcal{C}$ (n = 1, 2, ...) such that $C_n \subset C_{n+1} \subset E$ (n = 1, 2, ...) and $\lambda(E \setminus C_n) \searrow 0$.

Recall that l-group G is σ -complete if every upper bounded sequence $(a_i)_i$ has the supremum $\forall a_i$.

Lemma 2.2. Let G be σ -complete l-group. Let $\lambda : \mathcal{R} \to G$ be monotone, subadditive, compact and $\lambda(\emptyset) = 0$. Then λ is upper continuous in \emptyset , i.e.,

$$(A_n) \subset \mathcal{R}, A_n \searrow \emptyset \Rightarrow \lambda(A_n) \searrow 0.$$

Proof. See [1]. \square

Theorem 2.3. Let \mathcal{L} be a σ -complete l-ring, \mathcal{R} be a ring of subsets of a set, $\lambda : \mathcal{R} \to \mathcal{L}$ be a monotone, additive and compact mapping such that $\lambda(\emptyset) = 0$. Then λ is upper continuous in \emptyset .

Proof. Every σ -complete l-ring is a σ -complete l-group. Hence by Lemma 2.2 the result follows. \square

3. σ -ADDITIVE l-RING VALUED MEASURES AND THE PRODUCT MEASURE THEOREM.

Let \mathcal{R} be a ring of subsets of a set. A function $\lambda : \mathcal{R} \to \mathcal{L}$ is said to be $\sigma - additive$ if $\lambda(A) = \bigvee_{n=1}^{\infty} (\lambda(A_1) + \cdots + \lambda(A_n))$, whenever $A \in \mathcal{R}$, $A_n \in \mathcal{R}$ $(n = 1, 2, \dots)$ $A_i \cap A_j = \emptyset$ $(i \neq j)$, $A = \bigcup_{n=1}^{\infty} A_n$.

Lemma 3.1. Let G be an l-group, \mathcal{R} be a ring of subsets of a set. Then λ is σ -additive if and only if λ is upper continuous in \emptyset .

Proof. See [1]. □

Theorem 3.2. Let \mathcal{L} be a σ - complete l-ring, $\lambda : \mathcal{R} \to \mathcal{L}$ be a monotone, additive, compact mapping such that $\lambda(\emptyset) = 0$. Then λ is σ -additive.

Proof. It follows by Lemma 3.1 and Theorem 2.3. \Box

Further, let two rings \mathcal{R}_1 , resp. \mathcal{R}_2 of a subset of X_1 , resp. X_2 be given. Let $\mathcal{R}_1 \times \mathcal{R}_2$ denotes the family of all sets $A \times B$ $(A \in \mathcal{R}_1, B \in \mathcal{R}_2)$. A function $\lambda : \mathcal{R}_1 \times \mathcal{R}_2 \to \mathcal{L}$ will be called partially additive if

$$\lambda(A \cup B, C) = \lambda(A, C) + \lambda(B, C),$$

$$\lambda(D, E \cup F) = \lambda(D, E) + \lambda(D, F),$$

whenever

$$A, B, D \in \mathcal{R}_1, C, E, F \in \mathcal{R}_2, A \cap B = \emptyset, E \cap F = \emptyset.$$

Lemma 3.2. Let G be an l-group, $\lambda : \mathcal{R}_1 \times \mathcal{R}_2 \to G$ be a partially additive mapping. Then λ is additive.

Proof. See [1]. \square

Assume for this moment that $\lambda: \mathcal{R} \to G$ is a measure (G is σ -complete l-group). If we want to extend any G-valued measure from a ring to the generated σ -ring, we need a special property of G, so-called weak σ -distributivity ([2], [5]). The property is a necessary and sufficient condition for this extension.

Definition 3.3. A σ -complete l-group G is said to be weakly σ -distributive if for every bounded sequence $(a_{ij})_{ij} \subset G$ such that $a_{ij} \searrow 0$ $(j \to \infty, i = 1, 2, ...)$ it is

$$\bigwedge_{\phi \in \mathbb{N}^{\mathbb{N}}} \bigvee_{i=1}^{\infty} a_{i\phi(i)} = 0.$$

The following Definition comes naturally from the previous.

Definition 3.4. A σ -complete l-ring \mathcal{L} is said to be weakly σ -distributive, if σ -complete l-group \mathcal{L} is weakly σ -distributive.

Theorem 3.5 (Product Measure Theorem). Let \mathcal{L} be a weakly σ -distributive l-ring. If $\mu, \nu : \mathcal{B}(\mathbb{R}) \to [0, u]$ are positive measures (i.e., σ -additive, non-negative and having 0 in \emptyset), then there exists exactly one measure $\bar{\lambda} : \mathcal{B}(\mathbb{R}^2) \to [0, u]$ such that $\bar{\lambda}(A \times B) = \mu(A) \cdot \nu(B)$ for every $A, B \in \mathcal{B}(\mathbb{R})$.

Proof. First define the function $\lambda: \mathcal{D} \to [0,u]$ on $\mathcal{D} = \{[a,b) \times [c,d); \ a,b,c,d \in \mathbb{R}\}$ by the formula

$$\lambda(A \times B) = \mu(A) \cdot \nu(B).$$

Evidently λ is partially additive, hence additive by Lemma 3.2. It can be uniquely extended to an additive mapping $\lambda: s(\mathcal{D}) \to [0, u]$ defined by the formula:

$$\bar{\lambda}\left(\bigcup_{i=1}^n(A_i\times B_i)\right)=\sum_{i=1}^n\mu(A_i)\cdot\nu(B_i),$$

 $(A_i \times B_i) \cap (A_j \times B_j) = \emptyset \ (i \neq j)$. Moreover, the mapping $\bar{\lambda}$ is monotone, $\bar{\lambda}(\emptyset) = 0$ and compact with respect to $C = \{C \subset \mathbb{R}^2; \ C \ compact\}$. Then $\bar{\lambda}$ is σ -additive by Theorem 3.2., hence $\bar{\lambda} : s(\mathcal{D}) \to [0, u]$ is an l-ring valued a measure. By [4] $\bar{\lambda}$ can be uniquely extended to a measure on the generated σ -algebra $\sigma(s(\mathcal{D})) = \mathcal{B}(\mathbb{R}^2)$. \Box

4. Joint observable for l-ring

Now we are able to construct a joint observable of two observables for a special case of l-ring - weakly σ -distributive l-ring.

Definition 4.1. By an observable we shall mean a mapping $x : \mathcal{B}(\mathbb{R}) \to [0, u]$ satisfying the following properties:

- 1. $x(\mathbb{R}) = u$;
- 2. If $A, B \in \mathcal{B}(\mathbb{R}), A \cap B = \emptyset$, then $x(A \cup B) = x(A) + x(B)$;
- 3. If $A_n \in \mathcal{B}(\mathbb{R})(n=1,2,\ldots), A_n \nearrow A$, then $x(A_n) \nearrow x(A)$.

In the following example the correspondence between an observable a random variable is shown.

ADRIAN KACIAN

Example 4.2. Let (Ω, \mathcal{S}) be a measurable space, S be a σ -algebra, $\mathcal{F}_{[0,1]} = \{f; f : \Omega \to [0,1], f \text{ is measurable} \}$ and $\xi : \Omega \to \mathbb{R}$ be a random variable. Define $x : \mathcal{B}(\mathbb{R}) \to \mathcal{F}_{[0,1]}$ by the equality $x(A) = \chi_{\xi^{-1}(A)}$. Then x is an observable according to Definition 4.1.

If a binary operation \cdot on [0,u] is given , the joint observable of two observables can be introduced

Definition 4.3. Let $x, y : \mathcal{B}(\mathbb{R}) \to [0, u]$ be observables. The *joint observable* of observables x and y is a mapping $h : \mathcal{B}(\mathbb{R}^2) \to [0, u]$ with the following properties:

- 1. $h(\mathbb{R}^2) = u;$
- 2. If $A, B \in \mathcal{B}(\mathbb{R}^2)$, $A \cap B = \emptyset$, then $h(A \cup B) = h(A) + h(B)$;
- 3. If $A_n \in \mathcal{B}(\mathbb{R}^2)(n=1,2,\ldots), A_n \nearrow A$, then $h(A_n) \nearrow h(A)$;
- 4. $h(C \times D) = x(C) \cdot y(D)$ for every $C, D \in \mathcal{B}(\mathbb{R})$.

It is easy to see that the joint observable corresponds to the random vector $T = (\xi, \eta)$.

Example 4.4. Let $x, y : \mathcal{B}(\mathbb{R}) \to \mathcal{F}_{[0,1]}$ be observables

$$x(A) = \chi_{\xi^{-1}(A)}$$
 $y(A) = \chi_{\eta^{-1}(A)}$

where ξ, η are random variables. If $T(\xi, \eta)$ then

$$h(C\times D)=\chi_{\xi^{-1}(C)}\cdot\chi_{\eta^{-1}(D)}=\chi_{T^{-1}(C\times D)}$$

where $T^{-1}(C \times D) = \xi^{-1}(C) \cap \eta^{-1}(D)$.

Now we are able to prove the main result of this paper.

Theorem 4.5. Let \mathcal{L} be a weakly σ -distributive l-ring, and $x, y : \mathcal{B}(\mathbb{R}) \to [0, u]$ be observables. Then there exists the joint observable of observables x, y.

Proof. Put $\mu(A) = x(A)$, $\nu(B) = y(B)$ for $\forall A, B \in \mathcal{B}(\mathbb{R})$. Then μ, ν are *l*-ring valued measures. Let $\bar{\lambda}$ be the product measure constructed in Theorem 3.5.

Put for $\forall C \in \mathcal{B}(\mathbb{R}^2)$

$$h(C) = \bar{\lambda}(C).$$

Then $h: \mathcal{B}(\mathbb{R}^2) \to [0,u]$. The proof of the properties (1)-(4) is straightforward. \square

REFERENCES

- [1] Duchoň, M. Riečan, B., On the product of semigroup valued measures, Tatra Mountains 10 (1997), 17-27.
- [2] Fremlin, D. H., A direct proof of the Matthes-Wright integral extension theorem, J. London Math. Soc. 11 (1975), 276-284.
- [3] Mundici, D., Interpretation of AFC*-algebras in Lukasiewicz sequential calculus, J. Funct. Anal. 65 (1986), 15-63.
- [4] Riečan, B., On measures and integrals with values in ordered groups, Math. Slovaca 33 (1983), 153-163.
- [5] Volauf, P., On various notions of regularity in ordered spaces, Math. Slovaca 35 (1985), 127-130.

Mathematical Institute; Slovak Academy of Sciences; Štefánikova 49; 814 73 Bratislava; SLOVAKIA

E-mail address: kacian@ mau.savba.sk