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A GENERALIZED MOMENT PROBLEM
IN VECTOR LATTICES

CAMILLE DEBIEVE - MILOSLAV DUCHON - MICHEL DUHOUX

ABSTRACT. We present a moment problem in the context of vector lattices. The
corresponding generalized moment theorem and its corrolaries are stated and proved.

1. Introduction

If g is a real-valued function of bounded variation on the unit interval I of the
real line, the numbers

1
ak:/ thdg(t), keN,N={0,1,...}
0

are called the moments of g. A sequence of real numbers (a,,n € N) is said to give
a solution of the moment problem if there exists a function g of bounded variation

on I such that .
ak = / t*dg(t)
0

for k € N.
For every sequence of real numbers ag,k € N and every pair of non-negative

integers n, k, set
Aay = E (—1)? (j>ak+]-

=0

The sequence (ax,k € N) is called completely monotone if A"a; > 0 for all integers
n,k > 0. Hausdorff [4] has shown that for a sequence (ax) of real numbers to be the
moment sequence of some non-decreasing g (this case being of particular interest),
it is necessary and sufficient that (ax) be completely monotone. So the completely
monotone sequence gives a non-decreasing solution of the moment problem. The
result permits a generalization to the situation where (ax) is a completely mono-
tone sequence of elements of a (Dedekind) complete vector lattice the definition of
completely monotone sequence being the same [3]. In this paper we extend this
result for the case that we suppose boundedness of some sums of differences A™ay,
and we make then use the representation of an order bounded linear operator on
the space of continuous functions on the interval [a, b] of real line into a (Dedekind)
complete vector lattice Y ([1]).
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2. Moment problem theorem

Let Y be a (Dedekind) complete vector lattice. Denote by L°(X,Y) the vec-
tor space of all o—bounded operators (that is of order bounded operators) on the
normed space X into Y, that is of those that, if U € L°(X,Y), then {U(z); ||z|| < 1}
is an o—bounded subset of Y. For U € L°(X,Y) we put

| U | =sup{|U(2)]; ||| <1}

If we take into consideration a general form of an order bounded linear operator on
the space C[a,b] into Y we can formulate a task in the considerd case as follows:
Decide under which conditions there exists a function g(t) : [a,b] — Y of o—bounded
variation such that

b
/ t"dg(t) =yn, n=0,1,...

Recall that a function g, defined on T = [a,b] and taking values in Y, is said to
be of (0)-bounded variation, if the set of all elements of the form

Z lg(tj+1) — g(t;)l,

corresponding to all finite partitions of the interval T, is o-bounded. We shall
denote by (0) — varieTg(t) the least upper bound of this set.

We shall need the following result [1 , 7.1.5].

The general form of the (0)-bounded linear operator U : C(T) — Y is given by
the formula

U(f) = /T £(t)dg(2)

where g : T — Y is a function of (0)—bounded variation.
Denote by BV°(T,Y’) the vector space of all functions on T with values in ¥ of
the o—bounded variation.

Let us recall the following [1]. A function g : [a,b] — Y is said to be of order
bounded variation if the set of all elements of the form

Z 19(tj41) — 9(t;)]

corresponding to all finite divisions of the interval [a, b], is order bounded. Denote
by (0) — varie[a,59(t) the supremum of this set. Note that if g : [a,b] — Y is of
order bounded variation then |g| : [a,b] — Y is also of order bounded variation
because | |g(t)] — |g(s)|]| < |g(t) — g(s)l, s,t € [a,b]. Recall also ([2]) that if g is of
order bounded variation and f is a continuous function on [a, b] then both integrals

b b
[ gty [ awarce

exist and the integration by parts formula holds

b b
/a F(t)dg(t) = F(B)a(8) — f(a)g(a) — / o(1)df (t)
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We have also the inequality

b b
| / g(B)df(1)] < / g(®)ld|F(8)

for every continuous function f on [a,b].

If we take into consideration a general form of an order bounded linear operator
on the space Cla,bd] into Y [1] we can formulate a task in the considered case as
follows: Given y, € Y, decide under which conditions there exists such a function
of order bounded variation g(t) : [a,b] — Y that

b
(6) / tdg(t) = yu, n=0,1,...

We shall derive a concrete result relating to a power moment problem in the
interval [0, 1].

Theorem. In order that there exists a function of order bounded variation g(t) :
[0,1] = Y such that

1
(8) / t"dg(t) =Yn, yn €Y, n=0,1,...
0

it is necessary and sufficient that there exists a constant element M in'Y such that

(9) Z(Z)|A"_kyk| <M,n=0,1,...,
k=0
where A™y; denotes the m-th differences for the sequence (yx) defined inductively
by equalities
Ay = ATy — AMypi1, A%k = i,

(10) m=0,1,...;k=0,1,....

Proof. The necessity. Let the moment problem (8) be solved. Denote by L an
order bounded linear operator on the space C[0, 1] generated by a function of order
bounded variation, g(t) : [0,1] = Y, i.e.

1
L(f) = / F(H)dg(2), f € C([0,1]).
0
Put
(11) 2™ =tF(1—t)™, mk=0,1,....

Since
xim+1)(t) — tk(l _ t)m+1 — tk(l _ t)m _ tk+1(1 — t)m =
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0™ () — 2 (1),
we have
L(z™™Y) = Le(™) - L(z(7)), mk =0, 1,.
Further
L(z") = y.

If we take into the consideration (10), we can easily see (by induction) that
L(mgcm)) =A"yx, m,k=0,1,....

From this we deduce that (9) is satisfied, because using the integration by parts
formula we have the following.

> (harturt= 32 (01 [ wsto -

k=0

BP0l - [ a@dErP ) <
->(3) /

2() (=B (1)9(1)] + 2" (0)g(0)]) +

k=0

" _ (Z) / l9(@®)ld(2§""7 (1)) = g (0)|+

=0

+'g(1)'+,§( )/ lg(#)ld(=y" " () =
= o) + ol + [ 1o(0 Id;)(’,j)xi"““(m.

Since n "
(Z) CRO =N tra-onF=t+Q-t)" =1
=0 k=0

we have
n

(:) A" ¥au] < lg(O)] +lo(D]+ [ lo(old(1) =

k=0
= 1g(0)] + 19(1)| < 2varyp 119 = M.
The sufficiency. Let Lo denote the operator defined on the set of functions (z,),
z,(t) = t",n = 0,1,... into Y by formula Lo(zr) = yn,n = 0,1,.... Extend L
to the linear hull of the set (z,), i. e. to the set of all polynomials. Namely if
z(t) = co + c1t + -+ - + cxt™, we put

L(z) = coyo + 181 = -+ + CpYn.
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Since the functions z,(t) are linearly independent the definition of L will be unique.
The operator L defined above will be clearly additive and homogeneous. We shall
see that condition (9) implies that L is order bounded. Let us note that (even with-
out this condition) the operator L is order bounded on the set Py, of polynomials
the degree of which is < m, because Py, is finite-dimensional space (as coordinates
we take coefficients of polynomial), hence the convergence in P, is coordinatewise.

We have
L(xis)) = A%y, s,k =0,1,....

Take any polynomial p(t). Let the degree of p(t) be m. Form the sequence of
corresponding Berstein polynomials (of p(t))

n

Pa(t) = Ba(pit) = ) (Z)p(g)tk(l _ )k

k=0

It is well-known that the degree of the polynomial p,(t) for any n = 1,2,... is
not greater than m, and since p,(t) uniformly converges to p(t) for n — oo, we
have (according to remarks above) L(pn) — L(p). But

pn|<2()|p( ML) <
< 1ll - (7)1l < il
k=0

If we take the limit on the left side for n — 0o, we obtain

|L(p)| < |lpl|M.

Since p is an arbitrary polynomial, we have proved that L is order bounded on the
space of all polynomials. Now we may extend L to the whole space C[0, 1}, since
polynomials are uniformly dense in C[0,1] ([1],V1.3.3). We may now use for this
extension the theorem concerning general form of the order bounded linear operator

on the space C[0,1] ([1], VII.1.4) according to which

- /01 f(t)dg(t), feC0,1],

where g(t) : [0,1] = Y is a function of order bounded variation. In particular

1
L(t™) =/0 t"dg(t), n=0,1,...

We may further extend L to characteristic functions of all intervals in [0,1]. B
definition g(t) = L(cjo,4)-

Remark. We would like to mention that moment theorem can be applied to obtain
a new proof of spectral theorem for Hermitian operators. Cf. [5], where moment
theorem is considered in ordered locally convex spaces with some properties.
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We may apply the preceeding results, for example, to the sequences in all spaces
lp,Lp(S,p), 1 < p < oco. It is interesting to take zn, zo(t) = t",n = 0,1,...
as elements of the given spaces and to take the identity (inclusion) mapping from
C[0,1] — L,([0,1]), 1 < p < co. Then z, give a solution of the moment problem
in L,([0,1]). Namely

1
Tn :/ s"dg(s), n=0,1,...
0

where g(s) = ¢jo,4], €[0,s] being the characteristic function of the interval [0, s].

On the other hand z,, do not give a solution of the moment problem in C[0, 1],
i. e. by means of the function g with values in C([0, 1}, which, of course, is not a
(Dedekind) complete vector lattice.
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