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APPROXIMATION OF CoNTINUous T-NorMs BY STRICT T-NOrRMs
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Abstract. Approximation of a general continuous t-norm by means of
strict t-norms was recently shown by Fodor and Jenei [2], see also Ngu-
yen et al. [7] and Kreinovich et al. [5]. We give a modified construc-
tive version of mentioned result connecting advantages of all mentioned
approaches. Finally, we give an approximation by means of smoothly gene-

rated strict t-norms in a constructive way, modifying the results of

Jenei and Pap [3].
1. Introduction

The majority of applications of triangular norms deal with continu-
ous t-norms. Recall that a mapping T:[0,1]2—+[0,1] is called a triangu-
lar norm if it is symmetric, associative, monotone and 1 is its neutral
element, i.e., T(x,1) = x for all x € [0,1]. For more details about
t-norms we recommend [4,6,8].

From the computational point of view, the simpliest processing is
when using the strongest t-norm TM (= min) and in the case of continuous
Archimedean t-norms. The latter t-norms are generated by means of one-
place functions (additive or multiplicative generators). In what fol-
lows, we will mostly deal with additive generators , though all results

can be rewritten for the case of multiplicative generators straightfor-

wardly.

Theorem 1. [6] A t-norm T is continuous Archimedean t-norm if and only
if there is a continuous strictly decreasing mapping f:[0,1]1—[0,©] with
f(1) = 0 so that for all x, y € [0,1]

T(x,y) = £ '(min (£(0), f(x) + £(y)) . .

Recall that the function f from Theorem 1 is called an additive
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generator of the t-norm T and it is unique up to a positive multiplica-
tive constant. A continuous Archimedean t-norm T is called strict if and
only if any of its additive generators f is unbounded in O (i.e., if T
is isomorphic with the product t-norm TP). Non-strict continuous Archi-
medean t-norms are called nilpotent t-norms and they are characterized
by f(0) < w. Any nilpotent t-norm T is isomorphic with the Lukasiewicz
t-norm TL , TL(x,y) = max(0,x+y-1) . Further recall that if a function
f:10,1]>[0,o] is an additive generator of a continuous Archimedean
t-norm T then the function ¢:[0,1]1—[0,1] defined by ¢(x) = exp(-f(x))
{(i.e., ¢ is a continuous strictly increasing function with ¢(1) = 1) is

called a multiplicative generator of T and
T(x,y) = ¢ (max(4(0),d(x)(y))

Note that a multiplicative generator of a continuous Archimedean t-norm
is unique up to a positive power constant and that ¢(0) = O corresponds
to strict t-norms while ¢(0) > O corresponds to nilpotent t-norms.
Further, there are also non-continuous additive/multiplicative genera-
tors of t-norms [9]. If such non-continuous generator is non-continuous
alsc on the half-open interval ]0,1] then the resulting t-norm T is not
continuous. However, throughout this paper we will deal with continuous
triangular norms only.

Recently, in several papers the approximation of a general continu-
ous t-norm by means of continuous Archimedean t-norms was discussed
[2,3,5,7]. This result is of great importance not only from the theore-
tical point of view, but it allows to deal in several applications of
MV-logics with conjunctions generated by means of either additive or
multiplicative generators thus reducing the computational complexity.
The aim of this paper is to present a modified and more transparent
proof of mentioned result based on the original idea of Nguyen et al.
[7]. More, we will give a constructive approximation of a general conti-
nuous t-norm by means of t-norms generated by smooth generators, which
result was firstly discussed in [3]. The crucial point in the next con-
siderations is the well known characterization of continuous triangular

norms as ordinal sums of continuous Archimedean t-norms [4,6,8].

Theorem 2. Let T be a continuous t-norm. If all elements from [0,1] are
idempotent elements of T, i.e., T(x,x) = x for all x € [0,1], then T =

TM. If the only idempotent elements of T are the trivial idempotents 1
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and O then T is Archimedean and it can be represented by means of either
additive or multiplicative generators. Finally, in all remaining cases
there is disjoint system (]a1,bi[; i € #) of open subintervals of the

unit interval [0,1] and a corresponding system of continuous Archimedean

t-norms (Ti; i € ¥) so that

ai+(bi—ai)Ti((x—ai)/(bi-al),(y—al)/(bl-a ) 3ie ¥s.t. ”
(x,y)e[ai,bi]
min (x,y) otherwise

T(x,y) = {

Then T is called an ordinal sum of summands <ai,bl,Ti>, i e % and the

notation

T ~ (<ai,bi,Ti>; i e %) is used. ]

Recall that if T ~ (<a1’bi’T1>; i € %) is an ordinal sum with
representation of a continuous t-norm T from Theorem 2 then the union

v ]ai,bi[ is the set of all non-idempotent elements of T.
ied

2. Uniform approximation of a continuous t-norm by means of generators

Since Dombi [1] it is known, see also [2,4], that the strongest
t-norm Tn can be approximated by means of generated t-norms (either

strict or nilpotent ones).

Theorem 3.[1] Let f be an additive generator of a continuous Archimede-

an t-norm T. For A € ]0,w[, define fA:[O,ll—elo,m] by fA(x) = (f(x))A.
Then also fh is an additive generator of a continuous Archimedean t-norm
TA (which is strict if and only if T is strict) for any A € 10,o[. More,
for all x,y € [0,1],

lim TA(x,y) =T (x,y) = min (x,y) . (]
M
A—0

The latter result can be still strengthen. Namely, by the next theorem
of Fodor and Jenei [2], the convergence in Theorem 2 is uniform!

Theorem 4.[2] Let a sequence of t-norms (Tn):_ converges pointwisely

1
to a continuous t-norm T. Then this convergence is uniform, i.e., for
any € > 0 there is some n_ e N such that for all n = n_ and all x, y €
[0,1]

|Tn(x,y) - T(x,y)| <& . [
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Now, we will show that each continuous t-norm T can be approximated

with an arbitrary small given accuracy by some strict t-norm.

Theorem 5. Let T be a continuous t-norm and let 8 € ]0,1[ be given.

Then there exist a strict t-norm T<6> which is a é-approximation of T,

i.e., for all x, y € [0,1] it is

IT(x,y) - T (x,y)| < 5 . o

Proof.

1)

As a consequence of Theorem 3, the only idempotent t-norm TH can be
approximated by strict t-norms, i.e., for any 8 > 0 there is a strict
t-norm T_. such that for all x, y e [0,11% ITH(x,y) - Ts(x,y)l < 38

4]

Recall that starting from an arbitrary additive generator f of a strict

A

t-norm T, the power fA =f, A € 10,0, is again an additive generator

of a strict t-norm which we denote TA’ see also Theorem 3 . Denote

F6 = inf (f(x-8)/f(x); x € [3,1])

Note that F6 > 1. Then for each A > 1/log2F » T, is an appropriate

<] A

d-approximation of T“.

Indeed, let 8 = x =y = 1. Then TH(x,y) = x and

x = T,(xy) = LA+ N 2 e rx)) = fHFf(x) =
FlUF(x-8)) = x-5 .
Further, if x < 8 and x s y, then 0 = Th(x,y) s x = Tn(x,y) <8 .

2)

Let T be a nilpotent t-norm and let f be some of its additive
generators. For a given 8 € ]0,1[ , we define a new additive generator
f6:[0,1]—9[0,m] of a strict t-norm T[a] which is the required
d-approximation as follows:

f(8)8/x% if x € [0,8]
fa(X) = { f(x) otherwise

Similar arguments as in the first step justify the result.
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3)

Let T be a continuous t-norm which is an ordinal sum with summands
<ak,8k,Tk>, k € X . For a given 8 € 10,1[, define a continuous t-norm Ta
as an ordinal sum with the same summands as T but excluding those sum-
mands for which Bk—a <8 . It is evident that T6 is a S-approximation
of T. More, t-norm T has finite number of summands only! Let T6 be a
d-approximation of TM described in 1) and let T(s ~ (<¢xi,Bi,T >, 1 =

1,...,n), Bisai+1, i=1,...,n-1 . Define a continuous t-norm Tfa] with
the same summands as those of T6 but possibly adding new ones, or modi-
fying the original ones with nilpotent summand t-norms. We will exploit
the following fact : if there is an ordinal sum T with summand <o, B, T*>
and we replace the summand t-norm T* by its é-approximation T** then the
new t-norm is a d-approximation of T.

Hence, if 0 < o, we add the summand <O,u1,T6>; if B1 < a1+1 for some i
€ {1,...,n-1} we add the summand <Bl,a“4,T6>; if Bn < 1, we add the
summand <Bn’1’T6>' More, if some of t-norms Tl. i e {1,...,n}, is a
nilpotent one, we replace T1 by its corresponding d&-approximation
(Ti)[5]. Consequently, the t-norm T[al is a é-approximation of T and it
is an ordinal sum with finite number of summands <aj,BJ,TJ>, J=1,..,m

where each t-norm Tj is strict and JQl[aJ,BJ] = [0,1]

4)
In the last step we will show that if a continuous t-norm T is an
ordinal sum with two summands, T ~ (<0,c,T1>,<c,1,Té>) , where both
Tland T2 are strict t-norms, then there exists its d-approximation T<6>
which is a strict t-norm. Then, by induction, each t-norm T[S]
constructed in step 3) can be approximated by a strict S-approximation.
Let fi be an additive generator of Ti, i =1,2. For a given §, let

Gg = inf (f1(x—8/2)—f1(x); x € 18/2,11).
Define

5*

min (1 - f-l(Ga), 8/2) , &** = (min (8,1-c))/2

Now, we are able to define an additive generator f of the strict t-norm

T<6> we are looking for,
fa((x—c)/(l—c)) if x € [c+8**,1]
f(x) = { ax>+bx+c if x € [c-cé*,c+8**[ ,
kfl(x/c) if x € [0,c-cé*I[

where y = ax2+bx+c is the only parabol crossing the points
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(c+8**, f(c+8**)), (c,2f(c+6**)) and (c-cé*,4f(c+8**)), and the choice of
k ensures the continuity of f.
We will show that the strict t-norm T<6> generated by f is really a
d-approximation of T.

i) If x, y < c-cé* then T(x,y) = T<6>(x,y)

ii) If x < c-cé* and y = c-cd* then x = T(x,y) = T(x,c-cé*) =

cT(x/c,1-8*) = c(max (0,x/c -8/2)) > x - 8 , and similarly

X z (x,y) = T<6>(x,c~06*) = T(x,c-cé*) > x - § .

T<6>
iii) If x € [c-cd*,c] and y = c-cd* then c = T(x,y) = T(c-cd*,c-cd*) =
max (0,c-cé* - c8/2) > ¢ - 8 and similarly

c = T<8>(x,y) >¢c -8 .

iv) If x € [c,c+6**] and y = ¢ then c+8/2 = c+8** = T(x,y) = ¢ and
C+8/2 = c+8** = T<6>(x,y) 2 T<a>(c,c) c-cd* > c-8/2 .

v) If x, y = c+8** and T(x,y) < c+3** then c < T(x,y) < c+8/2 and
C+8/2 = c+8** > T<6>(x,y) > T<6>(c,c) = c-cé* > c-6/2 .

vi) If x, y 2 c+8** and T(x,y) = c+8** then T(x,y) = T<6>(x,y).

We have covered all possible cases for x, y € [0,1]. Combining the steps
1) -4) and replacing the given constant 8 by some smaller multiple of &

if necessary, we have just proved the theorem. =

It is evident that a similar approximation of a continuous t-norm T
by means of nilpotent t-norms is also possible. Indeed, for a given & >
0, it is enough to find an appropriate nilpotent t-norm T* which is
8/2-close to the strict t-norm T<'§/2> which is a &8/2-approximation of
given continuous t-norm T constructed as suggested in Theorem 5. Then T*
is d-approximation of T. Note that if some function f:[0,1]—I[0,»] is an
additive generator of the strict t-norm T<(§/2> then it is enough to
define a new additive generator f*:[0,1]1—[0,w] (which will generate T*)

as follows:

f(8/72)(1-%)/(1-8/2) if x € {0,8/2]
*(x) = {

f(x) otherwise

3.Smoothly generated approximations of continuous t-norms

Recall that by [3] a smoothly generated continuous Archimedean

t-norms possesses smooth generators (either additive or multiplicative)
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only, i.e., all mentioned generators are differentiable functions of all
orders n € N. Based on the results of Theorem 5, we will state a con-
structive smoothly generated d-approximation of a given continuous t-

norm T. Our construction is based on the following lemma.

Lemma 1. Let h:[0,1]—[0,1] be a function defined by
h(x)

(1 - exp(-(1-x)"?))exp(1 - x°2) whenever x e ]0,1[

and

h(0)

It

0, h(1) =1 .
Then the function h is a smooth function on [0,1] and for any n € N the

n-th derivatives h“ﬂ(0+) = h““(l-) =0 . ]

Theorem 6. Let T be a continuous t-norm and let 8 € ]0,1[ be given.

Then there exist a smoothly generated strict t-norm T* which is a

d—-approximation of T. (]
Proof.
<&8/2> .
Let T be a strict 3/2-approximation of T constructed as shown
in Theorem 5 and let ¢ be a multiplicative generator of T<6/2>. Then ¢

is a continuous strictly increasing automorphism of the unit interval

[0,1] and consequently, both ¢ and its inverse function ¢-1 are uniform-

ly continuous functions on [0,1]. Let v > O be a constant such that if

for u, v € [0,1] it is |u - v| < v then |¢"(w) - ¢ (v)| < &/a.

Further, let ¥ = v/3 and let B > 0 be a constant such that

|¢(x) - ¢(y)| < ¥ whenever x, y € [0,1], |x - y| < B.

Fix an integer n = max (1/8,4/8) and put X, = i/n , y, = ¢(xi), i=0,1,
.,n . Now, we will construct a smooth multiplicative generator ¢* by

means of the smooth function h from Lemma 1 as follows:

P*(x) = yi_1+(yi—yi_1)h((x—xl_l)/(x!-xl_l)) whenever x € [x1-1’x1]

for some i € {1,...,n}

It is easy verification that the function ¢* is well defined and
smooth. More, both ¢ and ¢* are continuous strictly increasing automor-
phisms of the unit interval crossing the same points (xl,yl), i=0,1,..

.,n. It is then evident that for all x e [0,1], [¢(x) - ¢*(x)| < 7.
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Consequently, for any x, y € [0,1] it is |¢(x)¢(y) - ¢*(x)¢*(y)| < 27 +
7% = v.Further, for any u e [0,1] it is |¢7 (u) - ¢* ™ (u)| < 1/n = 8/4 .

Denote the corresponding strict t-norm as T*. Then for all x, y € [0,1]

we get

IT*(x,y) - T2 (x,9) | = [¢* 7 (¢*(x)9*(y)) - ¢ (B(x)(y)) |

=[¢* 7 (¢* (x)* () - ¢ ($*(x)¢* (y)) |+[67 (¢*(x)¢*(y)) - ¢ (B(x)(y)) |
=38/4 + &8/4 = &/2 .

Now, it is evident that |T*(x,y) - T(x,y)| < 8 for all x, y € [0,1]. u
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