-39
On the pointwise convergence of continuous Archimedean t-norms and

the convergence of their generators

Radko Mesiar
STU Bratislava, Radlinského 11, 813 68 Bratislava, Slovakia
and

UTIA AV CR, P.O. Box 18, 182 08 Prague, Czech Republic

1. Introduction

Continuous Archimedean t-norms are distinguished t-norms which are iso-
morphic to the product (strict t-norms) or to the Lukasiewicz t-norm
(nilpotent t-norms).
Recall that a continuous Archimedean t-norm T is fully described by
means of the corresponding additive (or multiplicative) generator. Due
to the one-to-one correspondence between additive and multiplicative
generators we will discuss the case of multiplicative generators only.
Recall also that a multiplicative generator ¢ of a continuous Achimedean
t-norm T, ¢:[0,1]1—[0,1], is a strictly increasing continuous mapping
such that ¢(1) = 1 and it is unique up to a positive power constant. For
strict t-norms ¢(0) = O while for nilpotent t-norms it is ¢(0) > O.
Further, for all x, y € [0,1] we have

T(x,y) = ¢ (max(4(0),p(x)d(y))) = ¢V (g(x)p(y)) ,
where ¢b4):[0,1]—+[0,1] is a pseudo-inverse of ¢ defined by ¢b4)(t)
¢_1(max(¢(0),x)). For more details we refer to [3,4,6].
In [5], we have introduced an open problem whether the pointwise conver-
gence of continuous Archimedean t-norms to a limit continuous Archimede-
an t-norm T is equivalent with the pointwise convergence of an appropri-
ate sequence of corresponding generators to a generator of T. This prob-
lem was positively solved by Jenei [2] by means of additive generators
(only the convergence of generators in point 0 may be violated). Note,
however, that the proof of sufficiency was omitted in [2]. For the sake
of completeness, we include this proof showing that the pointwise con-
vergence of generators to a generator results to the pointwise conver-
gence of corresponding Archimedean t-norms. Further, in the present
paper we give a shorter solution of the above convergence problem by

means of multiplicative generators.
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2.Convergence of generators results the convergence of t-norms

There are several families of continuous Archimedean t-norms converging
to limit t-norm members. For any family of continuous Archimedean t-
norms {Tn} we can find an appropriate family of corresponding multipli-
cative generators (¢n} such that the limit ¢ = lim ¢n exists. So, e.g.,
taking sufficiently large power constants, we can force the resulting
limit ¢ to be O on interval [0,1] while ¢(1) = 1. However, ¢ is not a
multiplicative generator of a t-norm. On the other hand, if ¢ is a mul-
tiplicative generator of a t-norm, we are interested whether also the
family {Tn} converges to a limit t-norm T generated by ¢. Note that the
well known example of Frank’'s family of t-norms where strict t-norms
converge to a nilpotent limit member shows that the limit property for
generators in point O may be violated without influencing the 1limit
property of t-norms (the limit of strict t-norm generators in point 0 is
always 0 while the generator of nilpotent t-norm should be positive in
0).

Theorem 1. Let {Tn; n € N} be a family of continuous Archimedean t-

norms with respective multiplicative generators {¢n; n € N} and let the
pointwise limit on ]0,1] interval lim ¢n = ¢:]0,1]-]0,1] be a strictly
increasing continuous mapping, i.e., ¢ continuously extended to the
whole unit interval [0,1] is a multiplicative generator of some continu-
ous Archimedean t-norm T. Then T = lim Tn is the pointwise limit of

the given family of t-norms.

Proof. Note first that ¢n(1) = 1 for all n € N and consequently ¢(1) =

(-1)

1. Further, lim ¢n = ¢ implies lim ¢:4)= ¢ Indeed, if for example

(-1)

limsup ¢ -1

(x) > ¢ {x) for some x € ]0,1[ (note that in O all pse-

udo-inverses of multiplicative generators have the value 0 while in 1
they have the value 1) then there is a positive constant £ and an infi-

(-1)

nite subsequence {nk} such that ¢ -1

(x) > ¢ (x) + € > 0 for all n .
k

However, then the positivity of ¢:4)(x) leads to

k

(~-1) (-1) (-1)

x=¢ (¢n (x)) > 9. (¢

k k k

(x) + e)—¢(¢

(x) +€) >x ,
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what is a contradiction. More, the convergence of pseudo-inverses is a
uniform convergence (as the pointwise convergence of continuous mappings
to a continuous limit on a compact set), i.e., for any € > 0 we can find

an n € N such that for all x € [0,1] and all n 2 n it is

1670 (x) - gt

N (x)| < €.
Further, all mentioned pseudo-inverses are uniformly continuous (as
continuous functions on a compact set) and hence there exists some posi-
tive constant & such that

(-1)

16ty - ¢ P (2)] < e

whenever t, z € [0,1] and |t - z| < 8.

Now, take arbitrary two elements x, y € [0,1]. If at least one of these
elements is 0, then Tn(x,y) = 0 = T(x,y) for all n € N. Suppose that
both x and y are positive. Due to the pointwise convergence of
generators there is some m = n, such that for all n =2 m we have

|6 (x) + ¢ (y) - ¢(x) - o(y)| <o .
Then for all n =2 m we have

(-1) (-1)

IT (x,9) = T(x,¥)| = [¢_ (g (x) + ¢ (y)) - ¢ “(g(x) + o(y)) |
< (-1) _ (-1
= |¢n (¢n(x) + ¢n(y)) ¢ (¢n(x) + ¢n(y))|
+ 878 (x) + ¢ () - 67V (B(x) + $(¥)]
< 2¢
Since € can be chosen arbitrarily small , lim Tn =T. ]

3. Convergence of t-norms results the convergence of generators

Our proof is essentially based on the next convergence theorem which is

due to Fodor and Jenei [1].

Theorem 2. Let {T} be a sequence of t-norms such that the pointwise
n

limit T = lim Tn is a continuous t-norm. Then the latest convergence is

a uniform one, i.e., for arbitrary € > O there exists n, € N such that

for all nzn_, |T(x,y) - Tn(x,y)| < g for all x, y € [0,1] . m
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Each t-norm is a binary operation on the unit interval [0,1]. Due to the

associativity, there is unique extension of each given t-norm to an

n-ary operation on [0,1]. Based on Theorem 2, we have the following

convergence theorem.

Theorem 3. Let {T % be a sequence of t-norms such that the pointwise

limit T = lim Tn is a continuous t-norm. For a given k € N, let {a i}
n

be infinite convergent sequences of elements from [0,1] with

corresponding limits a i=1,...,k . Then

lim Tn(an’l,...,ah’k) = T(al,...,ak)
Proof. The proof for k = 2 follows from Theorem 2 applying the uniform
convergence of {Tn} to T. For k > 2 it is enough to apply the method of

mathematical induction. ]
Now, we are able to prove the main result of this paper.

Theorem 4. lLet Tn, ne€ N, and T be given continuous Archimedean t-norms
and let the pointwise limit 1lim Tn = T. Let ¢n, n € N, and ¢ be the
corresponding multiplicative generators with prescribed value ¢£(0.5) =
¢(0.5) = 0.5, n € N. Then

lim ¢n(x) = ¢(x) for all x € 10,1]

Proof. The proof is divided into several steps.

(-1)

i) It is evident that ¢ (-1

(0.5) = ¢ (0.5) = 0.5 for all ne N .
The convergence of {Tn} to T ensures the convergence
lim Tn(0.5,...,0.5) = T(0.5,...,0.5)
for any k-tuple (0.5,...,0.5) , k =z 2 (for k = 2 this 1is Just the
convergence of {Tn} to T, for k > 2 it is enough to apply Theorem 3 as

many times as necessary). Consequently,
(-1)

1im ¢ (¢ (0.5)%) = lim o™ = ¢V @™ = "V (¢(0.5)%).
ii) For any fixed k € N, put a = ¢;1(2-1/k) and a_ = o 2.
We will show that 1lim ¢;1(2—1/k) = ¢ '(27*). Suppose the contrary and

let, e.g., limsup a - b > a + ¢ for some € > 0. Then there is
n
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an infinite subsequence {an L M E N} converging to b and due to

Theorem 3,
g o (-1) oy (-1) k
0.5 = lim ¢n’k (ci’n’k (0.5)) = 1im ¢n’k (qﬁvn’k (a.n’k )
m m m m m m m
= 1im T (a , ,a )
n n,k n,k
m m m m
k-times
= T(b,...,b) = ¢ (s(0)*) > ¢V (p(a)*) = 0.5
k-times
what is a contradiction. The case when liminf a.ln « < ak -~ £ for some

positive £ is similar.

iii) Combining i), ii) and Theorem 3, we have for any positive rational
number r (which can be written as a ratio r = m/k of two numbers m, k €
N) the following convergence:
1im ¢r‘1‘”(2'”) =o' 2™
)

Taking into account the continuity of all pseudo-inverses ¢:4 , n € N,

and ¢ as well as the fact that ¢ (1) = ¢"(1) = 1 and
¢:4)(0) = ¢bd)(0) = 0 , the convergence
1im ¢V (x) = ¢V (x)
is true for all x € [0,1].
iv) The convergence of pseudo-inverses lim ¢:4) = ¢b4) ensures the

desired convergence of multiplicative generators on 10,1]. Indeed, let
that convergence be violated in some point x € ]0,1[ (the convergence in
point x = 1 is obvious) and let, e.g., liminf ¢n(x) < ¢(x). Then there
is a positive constant £ and an infinite subsequence {nk} so that

0<¢ (x) < ¢(x) - € (in the first inequality we need the positivity of
K
x!) and consequently
= ¢(—1)(¢ (x)) < ¢(-1)
n n

n
k k k

(-1)

(¢p(x) - €)—9 (p(x) - €) < x,

Dy =0

for all t < ¢(0) may destroy the previous contradiction). The remaining

what is a contradiction (note that for x = 0, the fact that ¢

case when limsup ¢n(x) > ¢(x) can be treated similarly. "
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4. Conclusions

In the light of Theorems 1 and 4, the limit properties of continuous
Archimedean t-norms can be investigated by means of the corresponding
multiplicative (additive) generators. More, we can approximate (uniform-

ly, see Theorem 2) strict t-norms by nilpotent t-norms and vice-versa.

Proposition 1. Let T be a given nilpotent t-norm. For any € > O there

is a strict t-norm Te such that for all x, y € [0,1].
IT(x,y) = T_(x,¥)| < € .

More, the system {Te} converges uniformly to T.

Proof. It is enough to suppose € < 1. Let ¢ be a multiplicative genera-
tor of T. For given € € 10,1[ , define a multiplicative generator ¢€ of

a strict t-norm Te as follows:

¢(e)x if x=¢g
¢e(X) = {

¢(x) otherwise

Now the result is evident. n

Proposition 2. Let T be a given strict t-norm. For any € > O there

is a nilpotent t-norm Te such that for all x, y € [0,1].
|T(x,y) - T_(x,y)| < & .

More, the system {Te} converges uniformly to T.
Proof. We can use similar argumentation as in Proposition 1 putting

(¢p(e)+dp(x)) /2 if x=<¢e
¢e(x) = {

o(x) otherwise
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