On the pointwise convergence of continuous Archimedean t-norms and the convergence of their generators

Radko Mesiar

STU Bratislava, Radlinského 11, 813 68 Bratislava, Slovakia and

ÚTIA AV ČR, P.O. Box 18, 182 08 Prague, Czech Republic

1. Introduction

Continuous Archimedean t-norms are distinguished t-norms which are isomorphic to the product (strict t-norms) or to the Lukasiewicz t-norm (nilpotent t-norms).

Recall that a continuous Archimedean t-norm T is fully described by means of the corresponding additive (or multiplicative) generator. Due to the one-to-one correspondence between additive and multiplicative generators we will discuss the case of multiplicative generators only. Recall also that a multiplicative generator ϕ of a continuous Achimedean t-norm T, $\phi:[0,1] \rightarrow [0,1]$, is a strictly increasing continuous mapping such that $\phi(1) = 1$ and it is unique up to a positive power constant. For strict t-norms $\phi(0) = 0$ while for nilpotent t-norms it is $\phi(0) > 0$. Further, for all x, $y \in [0,1]$ we have

 $T(x,y) = \phi^{-1}(\max(\phi(0),\phi(x)\phi(y))) = \phi^{(-1)}(\phi(x)\phi(y)),$ where $\phi^{(-1)}:[0,1] \rightarrow [0,1]$ is a pseudo-inverse of ϕ defined by $\phi^{(-1)}(t) = \phi^{-1}(\max(\phi(0),x)).$ For more details we refer to [3,4,6].

In [5], we have introduced an open problem whether the pointwise convergence of continuous Archimedean t-norms to a limit continuous Archimedean t-norm T is equivalent with the pointwise convergence of an appropriate sequence of corresponding generators to a generator of T. This problem was positively solved by Jenei [2] by means of additive generators (only the convergence of generators in point 0 may be violated). Note, however, that the proof of sufficiency was omitted in [2]. For the sake of completeness, we include this proof showing that the pointwise convergence of generators to a generator results to the pointwise convergence of corresponding Archimedean t-norms. Further, in the present paper we give a shorter solution of the above convergence problem by means of multiplicative generators.

2. Convergence of generators results the convergence of t-norms

There are several families of continuous Archimedean t-norms converging to limit t-norm members. For any family of continuous Archimedean t-norms $\{T_n\}$ we can find an appropriate family of corresponding multiplicative generators $\{\phi_n\}$ such that the limit $\phi = \lim_n \phi_n$ exists. So, e.g., taking sufficiently large power constants, we can force the resulting limit ϕ to be 0 on interval [0,1[while $\phi(1)=1.$ However, ϕ is not a multiplicative generator of a t-norm. On the other hand, if ϕ is a multiplicative generator of a t-norm, we are interested whether also the family $\{T_n\}$ converges to a limit t-norm T generated by ϕ . Note that the well known example of Frank's family of t-norms where strict t-norms converge to a nilpotent limit member shows that the limit property for generators in point 0 may be violated without influencing the limit property of t-norms (the limit of strict t-norm generators in point 0 is always 0 while the generator of nilpotent t-norm should be positive in 0).

Theorem 1. Let $\{T_n; n \in \mathbb{N}\}$ be a family of continuous Archimedean tnorms with respective multiplicative generators $\{\phi_n; n \in \mathbb{N}\}$ and let the pointwise limit on]0,1] interval $\lim_n \phi_n = \phi \colon]0,1] \longrightarrow]0,1]$ be a strictly increasing continuous mapping, i.e., ϕ continuously extended to the whole unit interval [0,1] is a multiplicative generator of some continuous Archimedean t-norm T. Then $T = \lim_n T_n$ is the pointwise limit of the given family of t-norms.

Proof. Note first that $\phi_n(1) = 1$ for all $n \in \mathbb{N}$ and consequently $\phi(1) = 1$. Further, $\lim \phi_n = \phi$ implies $\lim \phi_n^{(-1)} = \phi^{(-1)}$. Indeed, if for example $\lim \phi_n^{(-1)}(x) > \phi^{(-1)}(x)$ for some $x \in]0,1[$ (note that in 0 all pseudo-inverses of multiplicative generators have the value 0 while in 1 they have the value 1) then there is a positive constant ε and an infinite subsequence $\{n_k\}$ such that $\phi_n^{(-1)}(x) > \phi^{(-1)}(x) + \varepsilon > 0$ for all n_k . However, then the positivity of $\phi_n^{(-1)}(x)$ leads to

$$x = \phi_{n_k}(\phi_{n_k}^{(-1)}(x)) > \phi_{n_k}(\phi^{(-1)}(x) + \varepsilon) \longrightarrow \phi(\phi^{(-1)}(x) + \varepsilon) > x ,$$

what is a contradiction. More, the convergence of pseudo-inverses is a uniform convergence (as the pointwise convergence of continuous mappings to a continuous limit on a compact set), i.e., for any $\varepsilon > 0$ we can find an $n_0 \in \mathbb{N}$ such that for all $x \in [0,1]$ and all $n \ge n_0$ it is

$$|\phi^{(-1)}(x) - \phi_n^{(-1)}(x)| < \varepsilon$$
.

Further, all mentioned pseudo-inverses are uniformly continuous (as continuous functions on a compact set) and hence there exists some positive constant δ such that

$$|\phi^{(-1)}(t) - \phi^{(-1)}(z)| < \varepsilon$$

whenever t, $z \in [0,1]$ and $|t - z| < \delta$.

Now, take arbitrary two elements x, $y \in [0,1]$. If at least one of these elements is 0, then $T_n(x,y) = 0 = T(x,y)$ for all $n \in \mathbb{N}$. Suppose that both x and y are positive. Due to the pointwise convergence of generators there is some $m \ge n$ such that for all $n \ge m$ we have

$$\left|\phi_{n}(x) + \phi_{n}(y) - \phi(x) - \phi(y)\right| < \delta$$
.

Then for all $n \ge m$ we have

$$\begin{aligned} \left| T_{n}(x,y) - T(x,y) \right| &= \left| \phi_{n}^{(-1)}(\phi_{n}(x) + \phi_{n}(y)) - \phi^{(-1)}(\phi(x) + \phi(y)) \right| \\ &\leq \left| \phi_{n}^{(-1)}(\phi_{n}(x) + \phi_{n}(y)) - \phi^{(-1)}(\phi_{n}(x) + \phi_{n}(y)) \right| \\ &+ \left| \phi^{(-1)}(\phi_{n}(x) + \phi_{n}(y)) - \phi^{(-1)}(\phi(x) + \phi(y)) \right| \\ &\leq 2\varepsilon \end{aligned}$$

Since ϵ can be chosen arbitrarily small , $\lim_{n} T_{n} = T$.

3. Convergence of t-norms results the convergence of generators

Our proof is essentially based on the next convergence theorem which is due to Fodor and Jenei [1].

Theorem 2. Let $\{T\}_n$ be a sequence of t-norms such that the pointwise limit $T=\lim_n T_n$ is a continuous t-norm. Then the latest convergence is a uniform one, i.e., for arbitrary $\epsilon>0$ there exists $n_0\in \mathbb{N}$ such that for all $n\geq n_0$, $\left|T(x,y)-T_n(x,y)\right|<\epsilon$ for all $x,y\in[0,1]$.

Each t-norm is a binary operation on the unit interval [0,1]. Due to the associativity, there is unique extension of each given t-norm to an n-ary operation on [0,1]. Based on Theorem 2, we have the following convergence theorem.

Theorem 3. Let $\{T\}_n$ be a sequence of t-norms such that the pointwise limit $T = \lim_n T_n$ is a continuous t-norm. For a given $k \in \mathbb{N}$, let $\{a_{n,i}\}$ be infinite convergent sequences of elements from [0,1] with corresponding limits a_i , $i=1,\ldots,k$. Then

$$\lim_{n \to \infty} T(a_{n,1}, \ldots, a_{n,k}) = T(a_1, \ldots, a_k) .$$

Proof. The proof for k = 2 follows from Theorem 2 applying the uniform convergence of $\{T_n\}$ to T. For k > 2 it is enough to apply the method of mathematical induction.

Now, we are able to prove the main result of this paper.

Theorem 4. Let T_n , $n \in N$, and T be given continuous Archimedean t-norms and let the pointwise limit $\lim T_n = T$. Let ϕ_n , $n \in N$, and ϕ be the corresponding multiplicative generators with prescribed value $\phi_n(0.5) = \phi(0.5) = 0.5$, $n \in N$. Then

$$\lim \phi_n(x) = \phi(x)$$
 for all $x \in [0,1]$.

Proof. The proof is divided into several steps.

i) It is evident that $\phi_n^{(-1)}(0.5)=\phi^{(-1)}(0.5)=0.5$ for all $n\in \mathbb{N}$. The convergence of $\{T_n\}$ to T ensures the convergence

 $\lim_{n \to \infty} T_n(0.5, \dots, 0.5) = T(0.5, \dots, 0.5)$

for any k-tuple $(0.5,\ldots,0.5)$, $k\geq 2$ (for k=2 this is just the convergence of $\{T_n\}$ to T, for k>2 it is enough to apply Theorem 3 as many times as necessary). Consequently,

$$\lim \phi_n^{(-1)}(\phi_n(0.5)^k) = \lim \phi_n^{(-1)}(2^{-k}) = \phi^{(-1)}(2^{-k}) = \phi^{(-1)}(\phi(0.5)^k).$$

ii) For any fixed $k \in \mathbb{N}$, put $a_{n,k} = \phi_n^{-1}(2^{-1/k})$ and $a_k = \phi^{-1}(2^{-1/k})$.

We will show that $\lim_{n \to \infty} \phi_n^{-1}(2^{-1/k}) = \phi^{-1}(2^{-1/k})$. Suppose the contrary and let, e.g., $\lim_{n \to \infty} a_{n,k} = b > a_k + \varepsilon$ for some $\varepsilon > 0$. Then there is

an infinite subsequence $\{a_{n,k_m}, m \in \mathbb{N}\}$ converging to b and due to Theorem 3,

$$0.5 = \lim_{m} \phi_{n,k_{m}}^{(-1)}(\phi_{n,k_{m}}(0.5)) = \lim_{m} \phi_{n,k_{m}}^{(-1)}(\phi_{n,k_{m}}(a_{n,k_{m}})^{k})$$

$$= \lim_{m} T_{n_{m}}(a_{n,k_{m}}, \dots, a_{n,k_{m}})$$

$$= \lim_{k-\text{times}} T(b, \dots, b) = \phi^{(-1)}(\phi(b)^{k}) > \phi^{(-1)}(\phi(a_{k})^{k}) = 0.5$$

what is a contradiction. The case when $\liminf_{n,k} < a_k - \epsilon$ for some positive ϵ is similar.

iii) Combining i), ii) and Theorem 3, we have for any positive rational number r (which can be written as a ratio r = m/k of two numbers m, $k \in \mathbb{N}$) the following convergence:

$$\lim \phi_n^{(-1)}(2^{-r}) = \phi^{(-1)}(2^{-r})$$

Taking into account the continuity of all pseudo-inverses $\phi_n^{(-1)}$, $n \in \mathbb{N}$, and $\phi^{(-1)}$ as well as the fact that $\phi_n^{(-1)}(1) = \phi^{(-1)}(1) = 1$ and $\phi_n^{(-1)}(0) = \phi^{(-1)}(0) = 0$, the convergence $\lim \phi_n^{(-1)}(x) = \phi^{(-1)}(x)$

is true for all $x \in [0,1]$.

iv) The convergence of pseudo-inverses $\lim \phi_n^{(-1)} = \phi^{(-1)}$ ensures the desired convergence of multiplicative generators on]0,1]. Indeed, let that convergence be violated in some point $x \in]0,1[$ (the convergence in point x = 1 is obvious) and let, e.g., $\liminf \phi_n(x) < \phi(x)$. Then there is a positive constant ε and an infinite subsequence $\{n_k\}$ so that $0 < \phi_n(x) < \phi(x) - \varepsilon$ (in the first inequality we need the positivity of x!) and consequently

$$x = \phi_{n_{\mathbf{k}}}^{(-1)}(\phi_{n_{\mathbf{k}}}(x)) < \phi_{n_{\mathbf{k}}}^{(-1)}(\phi(x) - \varepsilon) \longrightarrow \phi^{(-1)}(\phi(x) - \varepsilon) < x ,$$

what is a contradiction (note that for x=0, the fact that $\phi^{(-1)}(t)=0$ for all $t \leq \phi(0)$ may destroy the previous contradiction). The remaining case when $\limsup \phi_n(x) > \phi(x)$ can be treated similarly.

4. Conclusions

In the light of Theorems 1 and 4, the limit properties of continuous Archimedean t-norms can be investigated by means of the corresponding multiplicative (additive) generators. More, we can approximate (uniformly, see Theorem 2) strict t-norms by nilpotent t-norms and vice-versa.

Proposition 1. Let T be a given nilpotent t-norm. For any $\varepsilon > 0$ there is a strict t-norm T_{ε} such that for all x, y \in [0,1].

$$|T(x,y) - T_{\varepsilon}(x,y)| < \varepsilon$$
.

More, the system $\{T_{\mathfrak{S}}\}$ converges uniformly to T.

Proof. It is enough to suppose $\varepsilon < 1$. Let ϕ be a multiplicative generator of T. For given $\varepsilon \in]0,1[$, define a multiplicative generator ϕ_{ε} of a strict t-norm T_{ε} as follows:

$$\phi_{\varepsilon}(\mathbf{x}) \; = \; \left\{ \begin{array}{ll} \phi(\varepsilon)\mathbf{x} & \text{if } \mathbf{x} \leq \varepsilon \\ \\ \phi(\mathbf{x}) & \text{otherwise} \end{array} \right. \; .$$

Now the result is evident.

Proposition 2. Let **T** be a given strict t-norm. For any $\varepsilon > 0$ there is a nilpotent t-norm **T** such that for all x, y \in [0,1].

$$\left|T(x,y) - T_{\varepsilon}(x,y)\right| < \varepsilon .$$

More, the system $\{\mathbf{T}_{_{\mathbf{E}}}\}$ converges uniformly to $\mathbf{T}.$

Proof. We can use similar argumentation as in Proposition 1 putting

$$\phi_{\varepsilon}(x) = \begin{cases} (\phi(\varepsilon) + \phi(x))/2 & \text{if } x \le \varepsilon \\ \phi(x) & \text{otherwise} \end{cases}.$$

Acknowledgement

The work on this paper was supported by the grant VEGA 1/4064/97.

- [1] J.Fodor, S.Jenei, On continuous triangular norms, Fuzzy Sets and Systems, to appear.
- [2] S. Jenei, On Archimedean triangular norms, Fuzzy Sets and Systems, to appear.
- [3] E.P.Klement, R.Mesiar, E.Pap, *Triangular Norms*. Monograph in preparation.
- [4] C.Ling, Representation of associative functions, Publ. Math. Debrecen 12 (1965) 189-212.
- [5] R. Mesiar, V. Novák, Open problems, Fuzzy Sets and Systems 81 (1996) 185-190.
- [6] B. Schweizer, A. Sklar, Probabilistic Metric Spaces. North Holland, New York, 1983.