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Abstract:

This paper deals with states calculation by a fuzzy state prediction model. The problem of vagueness reduc-
tion due to fuzzy arithmetics is solved by a modified algorithm of Sugeno controller. This access is problem
oriented and it is based on expert knowledge about the concrete controlled system. The solving of this
problem is showed on the example of an aeroplane.
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1 Fuzzy state description of a system

The behaviour of a physical system is often dependent also on inner states of that one. Hence the
information about inputs and outputs is not sufficient. The only system description involving also inner
states is the state description (1), (2) that enables also prediction of the next state. The parameters used in
such a description are calculated by linear or nonlinear relations. However, these relations are often inprecise
or thay can be only estimate. The need of handling inprecise parameters arises. Convenient means for
description of such parameters are fuzzy numbers and fuzzy arithmetics [3], [1].

There are two problems associated with fuzzy arithmetics:

1. calculation complexity — increase of calculation time

2. loss of information — average value decrease of grades of membership

The first problem can be solved using more efficient and quicker processors. The second problem is solved
in this contribution.

1.1 Behaviour description problem of an aeroplane

An aeroplane is a nonlinear complex system. There are hundreds of variables and parameters that
are changed during a flight either continuously (e.g. changes of velocity, height and angle of flight or fuel
consumption) or steply (sudden wind changes or changes of wing profile using leeding edges or flaps). The
nonlinearities affect behaviour robustness of such a system very negatively. This causes correct description
of an aeroplane only in a very small interval around the set—point. The state description is the only possible
way to describe such a system because the look at this system as a black box with its inputs and outputs is
not sufficient. Therefore the information about inner states is necessary.



The behaviour of an aeroplane can be described by a set of parameters characterising its fuselage and
air qualities. These are mostly measured in aerodynamical tunnels with limited precision. Concrete state
values in time t; together with aeroplane state model parameters enable calculation of the aeroplane state
in time ¢ (t2 > t1). If a sampling period T is given then t; = k1.7 and ty = ky.T where k; and k; are
sampling steps (ks > k1). Using Z-transformation enables to describe a state model in the sampled time in
the following form:

(L‘l((k+ 1)T) Fiy Fiz ... Fin :L'l(kT) By
.”L’z((k + 1)T) Fou Foy ... Foy, rz(kT) B,
: = : C : . : + .| u(kT) (1)
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y(kT) = (C1,Cq,...,Cr) . : + D .u(kT) (2)
z, (kT)
where z1, 23, ..., Zn, u and y are states, input and output of the described system, respectively. Fi;, Bt,

C'i and D are characteristic parameters of an aeroplane.

1.2 Vagueness in a state model

Parameters and quantities of such a state model are often afflicted with certain errors manifesting in
form of vaguenesses. The vaguenesses can by from principle devided in two groups:
1. vagueness of parameters

2. vagueness of measured variables

The first type of vagueness is due to insatisfactory knowledge about the described system, i.e. insatisfactorily
precise model, e.g. inprecisely specified constants, neglecting nonlinearities, etc. Many aeroplane parameters
are measured only under certain conditions (e.g. under certain velocities) not under all conditions. A need
of approximation arises. This introduces also inprecision in the model. The second type of vagueness is due
to measurement inprecision, noised signals among sensors and chip, etc. Going out from (1) and (2) the
parameters F;;, B;, C; and D belong to the first type and z;, u belong to the second one.

To describe vaguenesses it is possible to use fuzzy sets for their representation [4]. The parameters and
states can be in form of fuzzy numbers. The matrix representation of state model description enables to
apply fuzzy arithmetics (by name multiplication and addition of fuzzy numbers). A number of multiplication
and addition operations is to be performed to calculate the result. However, such a calculation causes loss of
information. The support of membership functions is dilated and the average value of grades of membership
falls down. It is lower and the peak of such a membership function is not more so expressive. Such a result
is too vague and not more usable. The aim is to restrict these undesirable effects.

2 Filtering of membership functions

There are many designs of base operations in the fuzzy arithmetics [3] aiming to optimize the calculation
with regard to the minimum support and the maximum peak expressivity of the membership function. These
accesses are based on general mathematical principles of fuzzy sets theory. On the other side it is possible
also another course based on modification of the already calculated membership function. In this case its
shape is additionally narrowed using ad~hoc knowledge about the concrete system but not more general
than in the first case. This method is similar to the filtering from the technical point of view.

A chart diagram in fig. 1 shows the design of the whole filtering feedback control circuit where the results
of the fuzzy state prediction model are filtered to be got less vague values and then proceeded to a controller.
In dependence of the controller used they can be defuzzified when a classical controller is used (e.g. a PID
controller).
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Figure 1: The chart diagram of filtering feedback control circuit (thick arrows — flow of fuzzy numbers, thin
arrows — flow of crisp numbers).

2.1 Sugeno filter

The Sugeno filter is a special case of the Sugeno controller [5] belonging to fuzzy controllers. It arose as
a modification of the Mamdani controller. The only difference is in form of fuzzy IF — THEN production rules.

Let be a system of m IF - THEN rules in form:

IF ziisLX} & ... & zn,isLX: THEN ui= fi(z1,...,2n)
IF =z isLX} & ... & zn,isLX? THEN uj= fa(x1,...,%0) ‘)
IF zyisLXP & ... & z,isLX? THEN u}, = fm(z1,...,2n)

LX are linguistic values and u} are crisp (not more fuzzy) values of partial outputs for each rule 7, : =
1,2,...,m, respectively. u} are computed by analytical functions f;. The total result u* is then computed



as the weighted average of u}. The strengths of rules ay,; are the weights:
m
Z Oy Uy :
ut = 4)
Y

Let us suppose a special case that f; is a linear function, i.e.:

uf = ¢15.81 + c2i. L2 + - + Cni-Tn, (5)
where cj; are constants, then:
m
Y- (cri-1 +caixa+ -+ Cninn)-
U* _ =1 (6)

*

m m m
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u = lm T+ —5 Za+ o+ ™ Tn (7)
2.a 2 Oy 2 O,
i=1 i=1 =1
If we introduce a substitution from p; to p, we get:
u* =p1.x1+p2.22+ -+ PnZn (8)

The equation (8) gives us a linear Sugeno controller (regardless of that how we got the parameters pi). If each
state variable z; has its derivatives in form (x(o), x(l) (2), ,z(")) (see (3)) and such a n-tity is the input
to the Sugeno controller then it becomes a linear ﬁlter The filtering quality depends directly proportional
on the number of derivatives. We can so apply to output y and n state variables z; (see (1) and (2)) n+1
different Sugeno filters. The condition of the derivatives existence for y and each z; is but often very strict
and cannot be fulfilled in many cases as too few derivatives are available and the filtering is little effective.
Therefore a conception of a modified Sugeno filter is designed here to avoid the fulfilment necessity of this
condition. The knowledge base of such a filter is case dependent and its results may be used as less inprecise
inputs for a fuzzy controller of flight stability.

2.1.1 Modified Sugeno filter

A case dependent modification of Sugeno filter was designed to simplify and to enable its use also for
cases when the classical Sugeno filtering is not effective. The main difference between this modification and
the classical access with regard to generality of the method is that the classical Sugeno filtering is general
with the same IF — THEN rules while the modified method is ad—hoc, in other words a new filter with case
dependent rules must be designed for each another system to be controlled. The need of an expert arises
which is able to create these rules. The modified method is explained under condition that the membership
functions used are triangular (see fig. 2). Of course, also other shapes of membership functions can be used
in general.

The IF - THEN rules are composed from one input (9) and one or three outputs (depending on that

whether a fuzzy or a crisp number is to be calculated). Let be m filtering rules for the state variable z; then
the j-th rule looks:

IF z;ispzi THEN i’ = I (z) & ult = 1 () & wl* = fi_(z:) 9)

z; is the result of the computational process of the fuzzy state model and its membershlp functlon has a
wide support. It is simply too fuzzy. Functions f/ (), 1 (z:) and (a:,) for calculating !}, ul; and u],
respectively define membership functions of so—called promment values u’
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Figure 2: A triangular membership function with its prominent points uf..:, U, Ui

The task is to narrow the support of z; to get a less fuzzy number. The calculated z; is compared with
the image pz] of the prominent value u] rule by rule (see fig. 3):

pal & ul (10)

Prominent values are the relatively precisely measured values under certain standard conditions like e.g.
some typical heights, air velocities etc. It is to be mentioned here that the aeroplane parameters are mea-
sured only at several values of hights or air velocities. If these parameters are measured at other values than
the standard one then they can alter very sudden in large intervals and their evaluation is only more or
less precise. It is the task of an expert to define the transformation relations (10). In other words, how can
a prominent value u} look when it proceedes to the fuzzy state prediction model and then becames more
fuzzy, i.e. pzl? z;, p:cf: and u{ have of course the same physical dimension and meaning. The sets of the
IF — THEN rules are defined for each state z; and output y in the same way too.

Both z; and p:cf: are fuzzy numbers represented by membership functions. To calculate the measure of
truth how much z; is identical (similar) to pz{ the so—called similarity relations are used [2], [6]. The result
is a similarity index (a crisp number) directly proportional to similarity between z; and pzl. The similarity
index is also the strength of the competent rule, i.e. «,; for the i-th filter in this case and the total output

fui (U = A, B, C, respectively) is computed similarly to (4) to construct the filtered membership function
fu;:

m *
E au’.'u{
24 Fu
Jui, = Lf:_— (11)
o
=

If a crisp value is needed then the simplest way is to calculate only fu}_,ie. fuj, = fui, = fu;

ic”
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