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Abstract

An approach to the knowledge-based control of manufacturing systems as a kind of discrete-event dy-
namic systems (DEDS) is presented in this paper. Petri nets (PNs) of different kinds - ordinary (OPNs),
logical (LPNs), fuzzy (FPNs) - are used to express analytically both the model of the system to be controlled
and to represent knowledge about the control task specifications (like criteria, constraints, etc.). The OPNs
yield the analytical model of the DEDS in the form of a linear discrete dynamical system. The analytical
form of the knowledge representation - i.e. the knowledge base (KB) - is obtained by means of the LPNs
or/and FPNs in the form of a linear discrete logic system. Both the model of the DEDS and the KB are
simultaneously used in the procedure of the control system synthesis. The elementary control possibilities
are generated (by means of the system model) in any step of the procedure. Then, they are tested with
respect to the realization condition. When there are several possibilities satisfying that condition the most
suitable (i.e. optimal) control possibility is chosen by means of the KB.

Keywords: Control system synthesis, discrete-event dynamic systems, manufacturing systems, knowledge
representation, Petri nets.

1 Introduction

Manufacturing systems (MS) or/and flexible manufacturing systems (FMS) are a kind of DEDS. Also transport
systems, communication systems, etc. belong to DEDS. Such systems are very important in human practice.
Therefore, the problem of the successful automatic control of them is very actual. Because the control task
specifications (like constraints, criteria, etc.) are usualy given in nonanalytical terms (also fuzzy) a suitable
knowledge-based approach is chosen to master the problem of the DEDS control synthesis. Even, such an
approach is necessary with respect to the concurrency of devices leading to conflict situations. On one hand the
concurrency can be expressed in the system model (e.g. PN-based one), however, on the other hand the system
itself is not able to solve the conflicts. A suitable knowledge representation is necessary for it.

2 The PN-based k-invariant model of the system

Let us understand the PNs in the sense of [3]. The simplest form of the OPN-based model of the DEDS in
analytical terms is the following

Xk41 = Xk + Buy, k= oO,N (1)
B=GT —F (2)
Fauy <xi (3)

where

k is the discrete step of the system dynamics development.

xi = (¥, ...,z%)7T is the n-dimensional state vector of the system in the step k. Its components z¥, i =
1, n, express the states of the DEDS elementary subprocesses. They acquire their values from the set {0,1}
where 0 expresses the passivity and 1 expresses the activity of the corresponding subprocess.

u; = (uf,...,uk)7T is the m-dimensional control vector of the system in the step k. Its components
u?, j = 1, m, represent the states of occurring the DEDS elementary discrete events (e.g. starting or ending
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the elementary subprocesses or other activities). They acquire their values from the set {0, 1} where 1 expresses
the presence and 0 expresses the absence of the corresponding discrete event.

B, F, G are, respectively, (n x m), (n X m) and (m x n)- dimensional structural matrices of constant
elements. The matrices F, G are the incidence matrices (in the analogy with the incidence matrices of the mutual
oriented interconnections among the PNs positions and transitions) expressing the mutual causal relations among
the DEDS subprocesses and the discrete events. The incidence matrix F expresses the causal relations oriented
from the states of the DEDS subprocesses to the discrete events occuring during the DEDS operation. The
incidence matrix G expresses the causal relation oriented from the discrete events to the states of the DEDS
subprocesses. The elements of these matrices acquire their values from the set {0,1} where 1 expresses the
existence and 0 expresses the nonexistence of the corresponding causal relation.

(.)T symbolizes the matrix or vector transposition.

3 The k-variant model of the DEDS based on oriented graphs

Oriented graphs (OGs) can be formally expressed as
(P,A) (4)

where

P = {p1,...,pn} is a finite set of the OG nodes with p;, i = 1,n, being the elementary nodes.

A C P x P is aset of the OG edges i.e. the oriented arcs among the nodes. It can be expressed by the
incidence matrix A = {6;;}, 6;; € {0,1}, 4= 1,n; j = 1,n. Its element §;; represents the absence (when 0)
or presence (when 1) of the edge oriented from the node p; to the node p;.

In order to have an opportunity to combine both the PN-based model and the OG-based one the OG nodes
should be equivalent with the PN positions. The OG oriented edges should express information about the DEDS
spontaneous discrete events in a suitable form. Therefore, the oriented edges should be properly weighted. To
have an opportunity to combine such an approach with the PN-based one the weights should express the actual
states of the PN transitions. In other words, there is only one difference between the PN structure and the OG
one. The PN transitions are fixed on the oriented edges between corresponding nodes (the PN positions) in the
OG structure. Formally, the set A C (P x T) x (T x P).

To introduce exactly the weights d;;,% = 1,n; j = 1,n, the OG dynamics can be formally expressed (in
analogy with the above PN-based approach) as follows

(X ) 61’ Zo ) (5)

where
X = {x0,X1,...,Xn} is a finite set (practically the same like in PNs) of the state vectors of the graph
nodes in different situations with x; = (01’;1, very al’,fn)T, k = 0, N, being the n-dimensional state vector of the

graph nodes in the step k; a";‘, € {0,1}, i = 1,n is the state of the elementary node p; in the step k (1 - activity

0 - passivity); k is the discrete step of the graph dynamics development.

61 : (X x U) x (U x X) = X is a transition function of the graph dynamics. It contains implicitly
the states of the transitions (the set U is practically the same like in PNs) situated on the OG edges.

Xp is the initial state vector of the graph dynamics.

Hence, the k-variant OG-based linear discrete dynamic model of the DEDS can be written as follows
Xe41 = ApXx , k=0,N (6)

where

k is the discrete step of the DEDS dynamics development.

x; = (0F,...,0% )T k=0, N is the n- dimensional state vector of the DEDS in the step k; ok ,i=1,n
is the state of the elementary subprocess p; in the step k. Its activity is expressed by 1 and its passivity by 0
(in the PN analogy it is the state of the elementary position).

Ay = {55}, 6k = 7{‘pilpj € {0,1},7 = 1,n; j = 1,n, because the set A can be understood to be in
the form Ar C (X x U) x (U x X). This matrix expresses the causal relations between the subprocesses
depending on the occurrence of the discrete events. The element éfj = 'ytkp oy € {0, 1} expresses the actual



value of the transition function of the PN transition fixed on the OG edge oriented from the node p; to the
node p;. It is based upon understanding the PN transitions to be fixed parts of the oriented arcs among the
PN positions - see Fig. 1 - very analogically to the knowledge representation in (3].
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Figure 1: An example of the placement of a transition on the oriented arc between two positions p; and D;

The dynamical development of the k-variant model is the following

Xe+1 = Ag.xp , k= o,N (7)
Xy = Ao.Xo (8)
X9 = Al.xl = A1.A0.X0 (9)
X = Ak_l.xk_l = Ak__l.Ak_g ..... Al.Ao.xO (10)
X = Qk,O-XO (11)

k-1

&, = [[a ; i=0k-1 (12)

=

The multiplying is made from the left. It must be said that the meaning of the multiplying and additioning
o;zerators in the development of the k-variant model have symbolic interpretation. For example, an element
¢i”;), t = 1, n; j = 1, n of the transition matrix ®; ¢ is either a product of k¥ elements (the transition
functions expressing the ”trajectory” containing the sequence of elementary transitions that must be fired in
order to go from the initial elementary state :1:? into the final state z¥) or a sum of several such product (when
there are several "trajectories” from the initial state to final one).

4 The analysis of the system to be controlled

The k-variant model of DEDS presented above is able to give us the system dynamics development in analytical
terms. Let us introduce an illustrative example concerning the PN-based and OG-based modelling DEDS.

4.1 An example of the DEDS

Let us demonstrate the approach on the maze problem introduced by Ramadge and Wonham [5]. It is the
typical example for many kinds of DEDS. Namely, two ”participants” - in [5] a cat and a mouse - can be as well
e.g. two mobile robots or two automatically guided vehicles (AGVs) of the FMS, two cars on a complicated
crossroad, two trains in a railway network, etc. They are placed in the maze (however, it can also be e.g. the
complicated crossroad, etc.) given on Fig. 2 consisting of five rooms denoted by numbers 1, 2,..., 5 connecting by
the doorways exclusively for the cat denoted by c;,4 = 1,7 and the doorways exclusively for the mouse denoted
by m;, j = 1,6 (the doors can represent also the point in the railway network, the cross lights on the crossroad,
etc.). The first of the participants (the cat) is initially in the room 3 and the second one (the mouse) in room 5.
Each doorway can be traversed only in the direction indicated. Each door (with the exception of the door ¢7)
can be opened or closed by means of control actions. The door ¢y is uncontrollable (or better, it is continuously
open in both directions). The controller to be synthetized observes only discrete events generated by sensors in
the doors. They indicate that a participant ist just running through. The control problem is to find a feedback
controller (or e.g. an automatic pointsman or switchman in railways, automatic cross lights in the crossroad,
etc.) such that the following three constraints will be satisfied:

1. The participants never occupy the same room simultaneously.
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Figure 2: The maze structure.

2. It is always possible for both of them to return to their initial positions (the first one to the room 3 and
the second one to the room 5).

3. The controller should enable the participants to behave as freely as possible with respect to the constraints
imposed.

At the construction of the PN-based model of the system the rooms 1 - 5 of the maze will be represented by
the PN positions p; - ps and the doorways will be represented by the PN transitions. The permanently open
door c7 is replaced by means of two PN transitions ¢7 and tg symbolically denoted as c§ and cf.

The PN-based models: The PN-based representation of the maze is given on Fig. 3. The initial state
vectors of the cat and the mouse are

°x0 = (00100), ™xo = (00001)T (13)

The structure of the cat and mouse control vectors is

‘up, = (cllc’ clzc’ claca 629 Cgv c'é, Cl’;’ CISC)T (14)
& e {0,1}, i=1,8
Tug = (mllc7 mlzc, mlsc’ mf’ m’gv mlg)T (15)
mfé e {0,1}, i=1,6
The parameters of the cat model are
n=2=5 me =8
(01000\
10010000 00100
10000
01000010 00010
F.=]1 00100000 |G,.=
00001
00001001 10000
00000100 00010
\ 01000 )

and the parameters of the mouse model are
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Figure 3: The PN-based representation of the maze. a) possible behaviour of the cat; b) possible behaviour of
the mouse

n=>5 my, =6
100100 001001
001000 010000
Fn,=]010000 |GI=] 100000
000001 000010
000010 000100

The OG-based models: At the construction of the OG-based model the matrices Ay and ™A, of the
system parameters are the following

0 0 c& 0 ck 0 0 <5 0 -cok
& 00 c o % 0 0 <5k 0
‘Ag=| 05 000 |=| 0 <65 0 0 o
ck k0o oo sk <% 0 0 0
0 0 0c o 0 0 0 < o
0 mk 0 mk o 0 ™, o0 ™k, o0
0 0 mfk 0 o 0 0 ™ o0 o
TAg=| mf 0 0 0 0 [=]m™% o o0 o o0
0 0 0 0 m 0 0 0 0 ™k
mf 0 0 0 0O ™ 0 0 0 0

The system dynamics development: The transitions matrices for the cat and mouse are the following

Brior = Apt1.°4; =

k+1 k+1
k+(; k ciil.cg k+2 k ' k-?l k
Cg .cf{ cg .7 ¢ .ch 0 ¢ e
=| &M 0 0 &t o
c'-f“.c’f 0 c§+1.c§ chtl ck k1 ck
c’5°"'1.c"4c c'5°+1.c’-} 0 0 0

“Priak = “Dpi2.°Apy1.CAf =



Figure 4: The OG-based model of the maze. a) possible behaviour of the cat; b) possible behaviour of the
mouse

(ck+2 chH k4 ch+2 chHl ok ck+2 b+l ok :
ckH2 ck+1 ok E+2 k+l k :
8 -C7 . 1 cl -C3 .CZ .
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k42 okt k+2 k+1 k
o c§ 0 ety
Dokt okl ok E+2 k41 k k+2 k+1 k
: oy he3 cy ' cgCE i e
D k2 okl k ch+2 gkt ok k+2 k+1 k
DocgTlcyt e cs gt | )
T @ik = T Agy1. Ak =
. (; 0 mEtl mk mEtt mb
mstlmb 0 0 0 0
= . q mhtl mk 0 mktt mk 0
mEtm} 0 0 0 0
0 mEtlmk 0 mhtl mk 0
T®rizk = " Dry2. " Bry1 AL =
/ m§+2.m’2°+1.m’f +m’(§+2.m'5°+1.m£c 0 :
k+2 k41 ok
0 my” “.m{" T .m3 .
= 0 0 :
E+2  k+1 k.
0 mg Cmyt mg
\ 0 0 :
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The system analysis: The states reachability trees are the following

0,0,1,0,0)

(1,0,0,0,0)

e
Cq
l /\4

(0,0,1,0,0) (0,0,0,1,0) (0,0,0,0,1) (0,1,0,0,0)

Figure 5: The fragment of the reachability tree of the cat

It can be seen that in order to fulfille the prescribed control task specifications introduced in the part 4.1 the
comparing of the transition matrices of both animals in any step of their dynamics development is sufficient.
Because the animals start from the defined rooms given by their initial states, it is sufficient to compare the
columns 3 and 5. Consequently,

1. the corresponding (as to indices) elements of the transition matrices for the cat and mouse have to be in
these columns mutually disjuct in any step of the dynamics development in order to avoid their meeting
on the coresponding " trajectories”.

2. if they are not disjunct they must be removed. Only elements with indices 3,3 and 5,5 of the matrices
®:43,0 represent the exception, because they express the trajectories of returning the animals to their
initial states. In case of the elements with indices 3,3 the element of the matrix €@} 3 0 should be chosen,
because it represent the trajectory of the cat making their come back possible. In case of the elements
with indices 5,5 the element of the matrix ™®3,0 should be chosen, because it represent the trajectory
of the mouse making their come back possible

3. in the matrix “®y3,% two elements in the column 3 (with the indices 2,3 and 4,3) stay unremoved, because
of the permanently open door. It corresponds to the prescribed condition that othervise the movement of
the animals in the maze should be free.
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Figure 6: The reachability tree of the mouse

4.2 The conclusion of the analysis

What is the advantage of such a solution is that the complete solution is found on such a way in the elegant form,
even in analytical terms. However, such an approach cannot be used for more complicated or large-scale systems.
Especially, the exponencial state explosion is very inconvenient. It leads to the term ’curse of dimensionality
(defined by R. Bellman at the definition of his dynamic programming method). Hence, another approach has
to be found in order to automate solving the problems of the DEDS control synthesis. Consequently, the below
introduced approach was proposed in order to avoid the control synthesis problems mentioned above.

5 The idea of the control synthesis

The control synthesis problem is that of finding a sequence of the control vectors ug, k = 0, N able to convert
the state of the system from an initial state xg into a terminal (final) state x;. However as a rule, the DEDS
control policy cannot be expressed in analytical terms. Knowledge concerning the control task specifications
(e.g. constraints, criteria, and further demands on the system behaviour) is usually expressed only verbally.
Even, sometimes it can be fuzzy. Consequently, the proper knowledge representation (e.g. the rule-based one)
is needed in form of a domain oriented KB. Usually, there are several different possibilities how to choose the
vector uy in any step k. The further development of the DEDS dynamics will undoubtedly depend on this
choice. Consequently, the proper knowledge representation is expected to be at disposal in order to avoid any
ambiguity. The KB is utilized at the choice of the most suitable (optimal) control vector uy in any step k in
order to avoid any ambiguity as to the further development of the DEDS dynamics.

In order to find in any step k the suitable control vector uy able to convert the state of the system from
the existing state x; into a following state Xx4; the simple procedure can be used. It consists in the following
principal steps: finding the control base, generating the elementary control possibilities, and choice of the actual
control possibility - i.e. the most suitable (optimal) possibility with respect to control task specifications.

5.1 The control synthesis procedure

The procedure of the control synthesis is schematically illustrated on Fig. 7. Hence, it can be concisely described
in the form of the verbal flow chart as follows:
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Figure 7: The principial procedure of the control synthesis.

START

e k=0 ie X ==Xp; Xp is an initial state; x; is a terminal state
LABEL:

o generation of the control base wy

o generation of the possible control vectors u; € wy

e generation of the corresponding model responses xxy1

e consideration of the possibilities in the KB (built on IF-THEN rules and expressing the control task
specifications)

e choice of the most suitable (optimal) control possibility
e if (the x; or another stable state was found) then (goto END) else ( begin k = k+ 1 ; goto LABEL; end)
END

On Fig. 7 the procedure of the control synthesis is concisely introduced. The vector wy, is the m-dimensional
control base vector.
5.2 Finding the control base vector

In order to mathematize the process of finding the control base in the step k let us perform the following
procedure with generating the auxiliary vectors yx, vi, Zk

X = (xlky-“’wnk)T (16)
_ k wr. .k_J 1 ifzF>0

o= @ttt ={ g BRSO i 17)

Vi = negyr=1L1,—yx (18)

vi = Flandy, (19)

Vi = (’Ulk,...,'vmk)T (20)

. k
T k {1 lf’UJ >0 L j=1,m (21)

_ k KT . —
e = (o emEm’) ;7 = 0 otherwise
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W = @gzk=1m—zk (22)

wr = (wF, ey Wi )T (23)

where
neg is the operator of logical negation.
and is the operator of logical multiplying.
1, is the n-dimensional constant vector with all of its elements equalled to the integer 1.
¥« is n-dimensional auxiliary logical vector.
Vk, Zk are, respectively, m-dimensional auxiliary vector and m-dimensional auxiliary logical vector.
Wy, is m-dimensional vector of the base for the control vector choice (i.e. the control base vector).

To interpret verbally the previous procedure it should be said that the auxiliary vector yj, represents a logical
form of the state vector x (because there can be the nonzero components, having their integer value greater
than 1, in the original state vector xx). The nonzero components of y; point out the subprocesses being in the
active state in the step k of the system dynamics development. After its logical negation the auxiliary vector Y
is obtained. Its nonzero components point out the subprocesses being in the passive state in the step k. Because
the integer components of the auxiliary vector v can be greater than 1, the auxiliary vector z; representing a
logical form of the vector v, is enumerated. Its nonzero components point out the discrete events that cannot
be enabled in the step k. The logical negation of v} yields the vector wg. Finally, the nonzero components
of wi point out the discrete events that can be enabled in the step k and, consequently, can contribute to the
system dynamics development. Having generated the control base vector wy, the information about the control
possibilities in the step k is at disposal. However, sorrow, only in an aggregated form. Hence, the vector wy
is only the vector expressing information for generation of control possibilities in the step k. To obtain the
elementary control vectors uy € wy, a suitable generation procedure is necessary. It is the following:

u = (ulk, - umk)T
'k - . .
k_ { w;* if it is chosen i=1m (24)

u C wi; u;"= .
ko= ko 0 otherwise

More details about the choice of the 'wj" are given in the following subsection.

3.3 Generating the elementary control possibilities

The control base vector wy contains an aggregated form of information about all control possibilities, because
its nonzero elements point out the FMS discrete events (i.e. in the metaphorical interpretation the PNs tran-
sitions) that could be theoretically enabled in the step k and contribute in such a way to the system dynamics
development. However, not always simultaneously. Of course, the elementary possibilities must be generated
and tested with respect to the condition (3). Only the possibilities satisfying this condition can be realized.
To answer the question why the condition must be tested in any step k, it must be said that the condition
(3) prevents taking more tokens from input PNs positions of the enabeled transition in question than there
are actualy placed in them in the actual step k. To analyze the control synthesis problem entirely we have
to take into account the following possibilities of constructing the control vectors: those containing only single
components of the vector wg, those containing pairs of components of the vector wy, those containing triplets
of components of the vector wy, those containing quadruplets, etc., and finally, that one containing the full
NE-plet of the components of the vector Wy (i.e. all of them - it is the case when u; = Wk)-
Theoretically (i.e. from the combinatorics point of view) there exist

Ne* &
M= () =2 (25)

‘ 1
i=1

possibilities of the control vector choice in the step k. Here,
m
NF =" wsk, (26)
Jj=1

It is the number of nonzero elements of the vector wi (i.e. the number of the PNs transitions that can
theoretically be enabled in the step k).
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5.4 The choice of the actual control vector

The vector wy represents the control base because it implicitly expresses the possible candidates for generating
the control vector uj in the step k. Its nonzero components point out the enabled transitions (when the PNs
analogy is used) in the step k, i.e. the possible discrete events which could occur in the DEDS in the step k
and which could be utilized in order to convert the state of the system from the present state xj into another
state Xx+1. When only one of the wy components is different from zero, it can be used (when the condition 3)
is met) to be the actual control vector, i.e. u; = wi. When there are several components of the w;, different
from zero (their number is N;*) several candidates (their number is exactly equal to N,¥) for the actual control
vector can be generated in the step k. The candidates that do not satisfy the condition (3) are automatically
eliminated. In spite of this, there can be more than one candidate satisfying the condition. Such candidates
can be devided into two main groups:

1. the single candidates containing only one component different from zero (i.e. only single enabled transition)

2. the parallel candidates containing more than one components different from zero (i-e. several transitions
enabled simultaneously).

Any single candidate can be chosen to be the alternative control vector without any regard to the fact whether
it is in a conflict with other single candidates or not. Hovewer, any single candidate being a subset of a parallel
candidate can be used simultaneously with all of the single candidates being also a subset of the same parallel
candidate. The simultaneous using such single candidates is equivalent to using the corresponding parallel
candidate in question.

5.5 The conclusion of the control synthesis

In order to automate the DEDS control synthesis procedure, knowledge about the control task specification
should be expressed in a suitable form. The KB intervention should reflect both the actual state of the system
behaviour and the external conditions (EC) expressing the control task specifications. Especially the EC can
be verbal or fuzzy.

The form of a simple rule (as a fragment of the KB) can be (in case of N, control possibilities) e.g. the
following: IF ((u}, X;,,) and ... and (ui, xi_,) and ... and (u}”, x,lcvjl) and EC) THEN (ui corresponding
to the EC).

6 The knowledge representation

Consider the knowledge representation in the form introduced in [1] - [4]. Consequently, the KB ” dynamics”
development - i.e. the KB truth propagation - can be expressed in analytical terms as follows

Pr1=ProrAandQg, K=0,N (27)
A=TTor W (28)
YandQg < Pk (29)

where
Py = (¢§1, ey ¢§n . )T; K = 0,N; is the elementary state vector of the KB in the step K (the discrete

step of the KB dynamics development). N is an integer (the number of different situations). ¢X ,i=1,nis
the state of the truth of the elementary statement S; in the step K. It means that the statement is false (when
0), true (when 1) or that the statement is true with a fuzzy measure (when this parameter acquires its value
from the real interval < 0, 1 > ).

Qx = (wE ..., wﬁml )T'; K =0, N is the ”control” vector of the KB (i.e. the state of the rules evaluabil-

ity) in the step K. wﬁj » J = 1,m; is the state of the evaluability of the elementary rule R; in the step K. It
means that the rule is not able to be evaluated (when 0), the rule is able to be evaluated (when 1) or that the
rule is able to be evaluated with a fuzzy measure (when this parameter acquires its value from the real interval
< 0, 1 > between these two boundary values).

W = {1;;},i=1,n1; j = 1,m; is the incidence matrix of the causa] interconnections among the state-
ments entering the rules and the rules themselves. ¥;; € {0,1} in the analogy with the LPNs and Yi; €<0,1>
in the analogy with the FPNs. In other words the element ti; represents the absence (when 0), presence (when
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Figure 8: The principial schema of the KB.

1) or a fuzzy measure of existence (when its real fuzzy value is between these boundary values) of the causal
relation between the input statement S; and the rule R;.

T' = {v;},i=1,my; j =1,n, is incidence matrix of the causal interconnections among the rules and the
statements emerging from them, where ;; € {0,1}, in case of the LPNs or 7;; € < 0,1 > in case of the FPNs.
7Yi; expresses a measure of the occurrence of the causal relation between the rule R; and its output statement
S;.

and is the operator of logical multiplying in general. For both the bivalued logic and the fuzzy one it can
be defined (for scalar operands) to be the minimum of its operands. For example the result of its application
on the scalar operands a, b is a scalar ¢ which can be obtained as follows: aandb = ¢ = min {a, b}.

or is the operator of logical additioning in general. For both the bivalued logic and the fuzzy one it can
be defined (for scalar operands) to be the maximum of its operands. For example the result of its application
on the scalar operands a, b is a scalar ¢ which can be obtained as follows: aorb = ¢ = maz {a, b}.

The KB can be schematically illustrateded by means of Fig. 8.

This paper presents - as a continuation on the author’s works [1]-[4] - the application of the fuzzy knowledge-
based approach to the synthesis of the MS or/and FMS control. The illustrative example of real system is
introduced too.

6.1 The example of the knowledge base construction

Let us try to represent knowledge in order to make the automatic solving of the previous control synthesis
problem possible. The above introduced control task specifications and constraints can be expressed in the
form of rule-based knowledge and the corresponding KB can be created. Utilizing the following statements

S1 = ("Kk41 = "Xp11); S2 = (Xpy1 = “X0); S3 = (MXp1 = ™X0); Sy = (“Xpp1 = ™Xg)

S5 = (MXk+1 = °X0); S6 = (“Xk41 # ™Xi41); S7 = (“Xkt1 # °X0); Sg = (MXp41 # ™Xo); S = (“Xk41 # ™x0)
510 = (MXp41 # °X0); S11 = there is only one vector ®ug; Si2 = there is only one vector ™uy

S13 = there are several vectors “uy; S14 = there are several vectors ™uy; Si5 = accept “uy; Sig = accept ™uy
Si7 = elimine ®ug; S1s = elimine ™uy; S19 = solution does not exist; Spp = take another cuy;

S21 = take another ™uy; Sy; = (accept “uy and elimine ™uy) or (accept ™uy and elimine “ug); So3 = I do not
know

and the following rules (where the symbol o replaces the the symbol and)

R1: IF (Sl o S7 o 512 o] 513) THEN (316 [+ 517 o Szo)

RQ: IF (Sl o Sg o Su o 514) THEN (515 o Slg o 821)

R3: IF S¢ THEN (S15 o Si6)

R4: IF (Sl o Sz o 314) THEN (515 o Sls (o] 521)

R5: IF (Sl (o] 53 o} 513) THEN (SIG o 517 o Sgo)
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Figure 9: The graphical expression of the task solution.

Rs! IF (51 [e] Ss o 514) THEN (515 (o] S18 o] S21)

R7: IF (Sl o S4 o 513) THEN (Sm o 317 o Sz())

Rg: IF (S4 [¢] SG o 512 o 513) THEN (SIG o 317 o Szo)

Rg: IF (S5 (¢ Ss o Sn o 514) THEN(Sls (o} Slg o] 521)

Ryo: IF (S3 o Sg) THEN (S5 o Si6)

R11: IF (53 o Ss) THEN (515 o SIG)

R122 (Sl o] Sg o 512) THEN Slg

R13: IF (Sl o S3 o Su) THEN Slg

R14: IF (Sl [e] Sz o 55 o Sll o SI‘Z) THEN Slg

R152 IF (Sl o Sa o S4 o Sll o 312) THEN Slg

R16: IF (Sl o] 311 o Slz) THEN Slg

R17: IF (51 o S7 (o] Ss (o] 513 o 514) THEN 522

ngi IF (S4 [¢) Sﬁ (o) 513) THEN 520

R192 IF (55 o Sﬁ o 314) THEN 521

Rzo: IF (Sl o S7 o Sg o] Sg o SlO o 513 o 514) THEN 523

we can obtain the structural matrices ¥, T' (n; = 23,m; = 20) of the analytical model of the PN-based
knowledge representation. The nonzero elements of the matrix ¥ = {11, ¥12, Y14, Y15, P16, Y17, ¥1,12, ¥1,13,

V1,14, Y118, V1,060 1,17, V1,20, Y24, P2,10, V2,12, V2,14, Y35, 3,11, V3,13, ¥3,15) Va1, Va8, Ya,15, Va.18, Yses Yso,
V8,14, ¥5,19, Y63, Yes, Y69, Pe,10, Ys,11, Ye,18) ¥6,19, Y11, V7,17, 7,20, Y82, V8,17, 8,20, V9,20, ¥10,20, P11,2, Y110,
V11,13, Y1114, Y1115, V11,16, V12,1, 12,8, Yi2,12, V12,14, P12,15, P12,16, P13,1, V13,5, V13,7, Y138, Y1317, V13,18,
¥13,20, V14,2, V14,4, V14,6, V14,9, Y14,17, P14,19, V14,20 and the nonzero elements of the matrix I' = {’71 165 V1,175
71,20, 72,15, 72,18, 72,21, V3,155 V3,165 V4,15, V4,18, V4,21; V5,165 V5,175 V5,20, V6,155 6,185 V6,21: V7,165 Y7,17, 77,20,
78,165 78,175 78,20, 79,15, 9,18, 79,21, Y10,15, V10,165 V11,165 Y11,165 Y12,19, V13,19, V14,19, Y15,19; 716,19, 717,22, 718,20,
V19,21, ¥20,23}- The KB obtained on this way helps to find automatically the solution of the control task - i.e.
to obtain the automatic synthesis of the control actions. E.g. when in the step k = 2 of the DES development
the situation is that the input statements Sy, Sy, S5, Sg, S, S13, and Sy4 are true the KB will start from the
initial state xg, K = 0 given as follows

$0=(11001001100011(/000000000) (30)

Hence, the rules R4 and Rg can be evaluated as it can be seen in the following vector given by the inference
mechanism presented e.g. in [3]
Qo=(00010100000000000000) (31)

Consequently, the output statements Sy5, Sig, and Sp; will be true as it can be seen from the state vector of
the KB in the step K =1 of the KB dynamics development

=(11001001100011100100100) (32)
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Stepk =0

°xo=(00100)T
Xo=(11011)T
‘wo=(00100000)T
cuozch

°x; =°x9 + B..ug

MXo=(00001)7
™Xo=(11110)T
Mwo=(000010)T
o0 = "Wy

mx; =""xg + B,.."ug

™x;=(00010)T
X1 # ™x1
Stepk =1
‘w1=(10010000)" || ™w;=(000001)7
the control possibilities are: {cy, c4, Mg}
all of them are possible

°x; = (10000)T

‘uj=(10000000)7 || ™u; ="w;
°x1=(01000)T My =(10000)T
“uf=(00010000)T =none=
°x3=(00010)T =none=
) £
Step k = 2
*w]=(01000010)7 || "w,=(100100)7
‘wZ=(00001001)T =npone=

the control possibilities are:
{c2, ¢7, #u1, ma}; c; has priority to my
{¥s, cs, K11, m4}; my has priority to cs

“alT=(01000000)T || ™u;=(000100)7
“u3?=(00000010)T =none=
“u?=(00000001)7 =none=
exi = (00100)7 mxs=(00001)T
cx‘%lzcxo mx3=me
°xi2=(00010)T =none=
°x2=(01000)T =none=

Table 1: The results of the control synthesis
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