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Abstract: A setting of fuzzy controllers is more complicated process than for classical ones, because the fuzzy
controller, like non-linear, have seemingly more freedom degrees. However its exploitation is often misguided.
Fuzzy controllers are often realised with two or three inputs and one output. If these inputs consist from a
variable and its derivations, this controller is similar to classical PI/PD/PID controller. A fuzzy PID controller
is physically related to classical PID controller, A setting of these controllers is based on deep common physical
groundwork, which is described in the article. Parameters of the fuzzy controller in presented papers are
adjusted in physical meaning of classical PID controllers. A newly introduced method with a unified universe
range considerably simplify the setting and realisation of fuzzy controllers.
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1. A NORMALISED UNIVERSE

For simpler design, universe ranges for inputs and outputs are normalised in interval <-1, 1> (Fig. 7). An input
value or an output value is multiplied by a constant which indicates a real range of the universe. If the error
value is multiplied by coefficient 5 before fuzzification, the real range of the universe for the error is
e€<-0.2, 0.2>. For coefficient 0.1 the range is ee<-10, 10>, It is evident there’s no conflict with commonness
and this procedure leads to the large simplicity for the fuzzy controller design as will be demonstrated.
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Fig. 1 Symmetrical membership function lay-out
2. FUZZY PI CONTROLLER DESIGN

A classical PI controller is described by equation (1) where X is gain of PI controller, T;is a integral constant,
e(?) is a error signal, e(f) = w(y) - (?), w(?) is desired value, y(f) is output from process and u(f) is output from
controller - action.

1
u(® =K (e(t) + 1 J-e(r)d'r) ¢))
I
When we derive (1) and we suppose zero initial condition, we get
§O=K@EO+ ) @
1
For a local extreme location we put
§O=K @O+ —e) =0 3)
I
A solution of equation (3) is
(0 = - e @

i .
because the PI controller gain have to stand X > 0. A line equation (4) depends only on the PI controller
integral time constant. Its physical meaning lies in a fact that it determines a border where the action derivation
changes a sign from positive to negative, if a state trajectory of the control system intersects the line from right
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to left (or from above to down) in a state space ¢ (#), e(f). The situation is displayed in Fig. 2. When the state
trajectory passes from left to right (or from below to up) when it intersect the line, the sign of the action
derivation changes from negative to positive. So there is a place in the step response where the state
characteristic intersects the line (for # (¢) = 0) and the action derivation # (f) changes its sign. If we translate
the equation (3) to the discrete form, we get a equation of a discrete PI controller

Au(k) = K (Ae(k) + Ti e®)) )
I

where  Au(k) = (u(k) - u(k-1)) IT T is the sampling period, £ is the step.
Ae(k) = (e(k) - e(k-1)) IT

Fig. 2 State trajectory of the control system with the PI controller
From Fig. 2 is obvious the time constant 7; have relation to the change-in-error. Therefore we modify the
equation (5) for a fuzzy PI controller derivation
Au(k)=K TL (TiAe(k) +e(k)) ©)
{

In the next step it is necessary to map the rule base to the discrete state space de(k), e(k). We define a scale
factor M for the universe range, M > 0. This scale factor sets the universe ranges for the error and its first
differential (Fig. 3). We extend the equation (6) and get

M T 1
Au(k) = K—(— Ae(k) + —e(k 7
(%) T ( I, e(k) v e(k)) @)
We apply fuzzification at input variables and after defuzzification we get the equation
M I 1
Au(k)=K—D{ F{ — Ae(k) + —e(k 8
u(k) T { {M e(k) Me()}} t))
where F is an operation for fuzzification and D for defuzzification.
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Fig. 3 A fuzzy PI controller rule base mapping to the discrete state space
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We put an expression instead Au(k)

_uk)-—uk-1) _ M i 1 9
Au(k) — K T D{F{ v, Ae(k) + Vi e(k)}} ®
A result value of the fuzzy PI controller action in the step & is
u(k) = K—AZ/{TT D{F{ % Ae(k) + —if—e(k)}} +u(k-1) (10)

A realisation of the fuzzy PI controller according (10) is in Fig. 4.
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Fig. 4 Fuzzy PI controller structure with the normalised universe range
3. FUZZY PD CONTROLLER DESIGN
A classical PD controller is described:

u() =K (e(®) + Tpé(r)) 11
We derive (11) if zero initial conditions are supposed

u() =K(e(t) +Toé(H) 12)
For location of the local extreme we put (if X > 0)

e +Tp (=0 13)

The convenient solution we get by integration of the equation (13). It is
1
éM=-—e(® (14)
()

The line equation (14) depends only on the derivational time constant of the PD controller and its physical
meaning is similar like for the PI controller. If we transfer the equation (11) to the discrete form, we get a
equation of the discrete PD controller

u(k) = K (e(k) + Tp Ae(k)) (15)
where Ae(k) = (e(k) - e(k-1)) /T and T is the sample period.
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Fig. 5 Structure of the fuzzy PD controller with the normalised universe range

In the next step we map the rule base to the discrete state space de(k), e(k). We initiate the scale A/ for the
universe range, A > 0. This scale sets ranges for the error and the change-in-error. After extending the
equation (15) we get

u(l) = KM ( -All-e(k) +%D Ae(®)) (16)
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We apply fuzzification at input variables and after defuzzification we get the equation

u(k) = KM D{ F{%e(k) +%Ae(k)}}

The resultant action value of the fuzzy PD controller is given by the equation (17). The fuzzy PD controller
realisation according this equation is in Fig. 5. A fuzzy PID controller can have got many variants. From a

an

practise point of view there are the most frequent versions: a parallel combinations of PD+PI controllers.

4. FUZZY PD+PI CONTROLLER DESIGN

The controller have three common constants - the gain K, the scale M and the sample period 7. It is
advantageous if we establish the gain and the scale extra for every controller even in this case. So the fuzzy PI
controller have the gain Kj and the scale M;. The fuzzy PD controller have the gain K and the scale Mp. The

period can be the same or different.
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Fig. 6 Structure of the fuzzy PD+PI controller with the normalised universe range

5. EXAMPLES
On the transfer function
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Fig. 7 Responses in the system with the fuzzy
PD+PI controller. Dot curves are for the Min-
Max inference and solid curves are for the Prod-
Max inference
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Fig. 8 Responses in the system with the fuzzy
PD+PI controller and with the setting for the
faster response on the load change
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was designed PID controller. The controller have three common constants - the gain K, the scale A and the
sample period 7. It is advantageous if we establish the gain and the scale extra for every controller even in this
case. So the fuzzy PI controller have the gain K; and the scale M;. The fuzzy PD controller have the gain Kp
and the scale Mp. The period can be the same or different. If we optimise the fuzzy controller parameters
setting with regard to a very little oscillatory action on the change in desired value, we can sct parameters on
Ki=Kp =2, T; =3, Tp=1.5, M; =Mp =10, T = 0.1 5. Simulation results with the transfer function (18) are in
Fig. 7. If we will optimise the setting of the fuzzy PD+PI controller with regard to the fast response of the load
change, works on the input of the transfer function (18) we can set parameters of the controller for instance: K;
=Kp=4, T1=2.2, Tp=2, Mi=Mpy =10, T = 0.1 s (Fig. 8). If a user is familiarised with basic ideas of control
theory, he can relatively fast set the fuzzy controller even it have the non-linear membership function lay-out.
When the same setting of all parameters of the fuzzy controller is used like in Fig. 9 except variances in the
normalised membership function lay-out for the fuzzy PI controller change-in-action.
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Fig. 9 Non-linear membership function lay-out in  Fig. 10 Responses in the system with the fuzzy PI+PD
the calculation of the change-in-action ( for Pl controller and the time transformation to slow.
controller). A used inference method is Min-Max. Ki=Kp=4, Mi=Mp=10,T;= 8*2.2=17.6 5, Tp=2*8=16 s

The fuzzy PI+PD controller realising according Fig. 6 have even opinion to change time scale. In Fig. 10 are

responses of the control system with the transfer function F(s)= 2/((80s+1)(8s+1)?) (the multiplying coefficient
is 8x).

6. CONCLUSION

For the fuzzy PID controller setting it is necessary to determine universe ranges and perform tens or hundreds
simulation experiments until we find acceptable values. A retrieval of optimal parameters is very difficult,
because the setting is dependent on a lot of other parameters. In addition optimal parameters could be
dependent on the error value. The new method with the unified universe range, stated in this article,
considerably simplify setting of fuzzy PI/PD/PID controllers. The fuzzy PID controller can be programmed like

a unified block in a controller and therefore work consumed on a implementation to the particular control
system can be cut short.
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