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AN EQUIVALENCE OF APPROXIMATE REASONING
UNDER DEFUZZIFICATION

E. Czogala, J. Leski
Technical University of Silesia
Akademicka 16, 44-101 Gliwice, Poland

Abstract. A specific type of equivalence of inference results under defuzzification between logical
implication interpretation and conjunctive interpretation of the fuzzy if-then rules has been
considered in this paper.

1. Introductory remarks

A study of inference processes when premises in if-then rules are fuzzy is still a subject of many
papers in specialized literature c.f. [1-9]. In such processes, a sound and proper choice of logical
operators plays an essential role. The theoretical (mathematical) and the practical (computational)
behavior of logical operators in inference processes has to be known before such a choice is made.

Some selected logical operators and fuzzy implications were imvestigated here with respect to
their behavior in the inference processes. A specific type of equivalence of inference results
obtained using on one hand a conjunction interpretation of fuzzy if-then rules and on the other
hand the interpretation of such rules in the spirit of classical logical implication may be shown.
Such equivalence is important regarding the inference algorithms construction. The inference
algorithms based on logical implication interpretation of the if-then rules may be replaced by the
simpler, faster and more exact algorithms used for the conjunctive interpretation of such rules.

2. Approximate reasoning using generalized modus ponens and fuzzy implications

Fuzzy implications are mostly used as a way of interpretation of the if-then rules with fuzzy
antecedent and/or fuzzy consequent. Such rules constitute a convenient form of expressing pieces
of knowledge and a set of if-then rules forms a fuzzy rule base. Let us consider the canonical form
of fuzzy if-then rule R¥, which includes other types of fuzzy rules and fuzzy propositions as special
cases, in the (MISO) form

R* ifX isAand and X isA) then YisB* 1)

where X;and Y stand for linguistic variables of the antecedent and consequent and A%, B* are fuzzy
sets in universes of discourse X, c R, Y < R respectively.
Such a linguistic form of fuzzy if-then rule can be also expressed as a fuzzy relation:

R¥ = (Afx. xAf=B*) = @k=B*) 2)

where A*= A *x...xA " is a fuzzy relation in X = X, x ...x X_ defined by
A5 x A Gy x ) = A ) g xp A x) = AKE) (3)

where » - denotes respective t-norm T.

Fuzzy if-then rules may be interpreted in two ways: as a conjunction of the antecedent and the
consequent (Mamdani combination) or in the spirit of the classical logical implication i.e. as a
fuzzy implication [3,4,9].

Approximate reasoning is usually executed in a fuzzy inference system which performs a
mapping from an input fuzzy set A' n X to a fuzzy set B' in Y via a fuzzy rule base. Two methods
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of approximate reasoning are mostly used: composition based inference (first aggregate then
inference - FATI) and individual-rule based inference (first inference then aggregate - FITA).

In composition based inference, a finite number of rules k = 1,..., K is aggregated via
mtersection or average operations i.e.

K
= k 4
R () R @
where M5 denotes the symbol of connective operation using t-norm (T) or averages (e.g.
normalized arithmetic sum (X/K)) for aggregation of respective membership functions

*r
|

Taking into account an arbitrary input fuzzy set A' in X and using the generalized modus
ponens we obtain the output of fuzzy inference (FATI):

*r

R(x,y) = R(x,) R¥x,») 3

X

K
B’ = A'R =A’°ﬂ R =A_/°n (A*=B " (6)
k=1

k=1 T,n T,E
or in terms of membership functions:

B'(y) = sup %5 [4'(x), R(x, Y] =

xeX
I's
Ar )
sup x5 [A/(x),| *!' |R*x, )]

&EX i

k=

where Ap, . denote t-norms (T, T') for aggregation operation and composition respectively.
In individual - rule based inference (FITA) each rule in the fuzzy rule base determines an output
fuzzy set and after that an aggregation via intersection or average operation is performed. So the
output fuzzy set is expressed by means of the formulas:
K

B//=nTEA-/0(Ak=>Bk) (8)

k=1""

or:

B"(y) = | ¥ |sup xp [4'®),R *x, )] )

Y |

k=

K
As
1

It can be proved that B' is more specified then B" i.e.

B'cB" or B'y)<B"®y) (10)

It means that the consequent B' is equal to or contained in the intersection of fuzzy inference
results - B". Sometimes for simplicity of calculation the consequent B' is replaced by B", under the
assumption that the differences are not so big.

If the input fuzzy sets A'),..., A, or (A') are singletons in xy,...,X,, or (X,), the consequence B'
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is equal to B" (B'(y) = B"(y)).

Fuzzy inference engine generate inference results based on fuzzy if-then rules. These results are
mainly fuzzy sets. In many applications crisp results are required instead of fuzzy ones. The
transformation of fuzzy results into crisp is performed by a defuzzification method generally
expressed as

5: F(X)-Y a1

or equivalently for membership functions
8,1 (B'0)| B/ e F(X),yel | Y (12)

where symbols &, &, stand for defuzzification mapping.

Tt means that defuzzification is defined as a mapping from fuzzy set B' which is the output of
the fuzzy inference to crisp point y* € Y. This also implies that a defuzzification method should
be chosen. Although many various defuzzification methods (defuzzifiers) may be proposed, we
will recall the most important ones from the class of standard defuzzifiers (SD).

1. The center of gravity (COG) defuzzifier specifying the y* as the center of the area covered by
the membership function of B' i.e.

f yB'(y)dy

Y

-*

y 13)

Ry
Y

2. Sometimes it is necessary to eliminate the y € Y, whose membership values in B' are too small
or equal in all Y (non-informative part of membership function). In this case we use the indexed
center of gravity (ICOG) defuzzifier which results in:

[vB'®)ay
Y
y'Es (14)
[B6)ay
Yl
where « is constant and Y, is defined as
Y, ={veY|B'®:a} 3)

To eliminate the non-informative part under membership function where B'(y) > «, the
informative part or operative part of the membership function where B'(y) > 0, has to be parallel-
shifted downward by the value of « according the formula

ey o 40 ifB'0) < a
B @)—{B,(y)_a /B> @ (16)

In such case we may build a modified indexed center of gravity defuzzifier denoted by MICOG,
which may be expressed in the form:

[vB*may [yB'®)-a)ay

*

y

= = = = 17)
[Bmay  [B'0)-a)dy (
14 Y,

[

Last modification can also be obtain considering ordinal COG defuzzifier on bounded difference,
ie.

y* = COG[max(0,B'(y) - a)] (18)
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Other modifications are obtained when two cutting levels «, (lefi-sided) and B (right-sided),
(a; > PBg) for B'(y), appear. Denoting the cutting points for constant levels with B'(y), by y, and
yp respectively, we get:

y* = COGIB'()) - B Uy -yy) - ¢, Iy, - )] (19)

denoted shortly MICOG, ;, and
y* = COG[B'()) - B Iy -y,) - a, Iy, - V] (20)

denoted MICOG,,,, where I(-) denotes the Heaviside unit step pseudo-function. The interpretation
of the above introduced defuzzifiers is obvious.

3. Denoting y® as the center of the k-th fuzzy set and t, as its height, the center average
defuzzifier (CAD) or height method (HM) determines y* as

K

E tky(k)
. _ kel
A Q1)
Ty
k=1

4. The maximum defuzzifier (MD) chooses the y* as the point in Y at which B'(y) achieves its
maximum value i.e. defining the set of all points in Y at which B'(y) achieves its maximum value
YB') = {yeY|B'(») = sup B'()} (22)

yeY

the maximum defuzzifier determines y* as an arbitrary element in Y(B').
The mean of maximum (MOM) defuzzifier is defined as

yo = ——f—;— (23)

where the integral denotes the conventional integration for the continuous part of Y(B') (or
summation for the discrete part of Y(B') ).

The modifications applied to defuzzifier 2, can also be applied to defuzzifiers 3 and 4 denoted
shortly as MISD,, MISD, ,, MISD, ,

4. An equivalence of inference results using fuzzy implication interpretation and conjunctive
interpretation of the if-then rules under defuzzification.

An output fuzzy set B'(y) obtained from inference system based on fuzzy implication
interpretation of if-then rules is different from the resulting fuzzy set obtained from inference
system based on conjunctive interpretation of fuzzy if-then rules. However in many applications
crisp results are required instead of fuzzy ones. Hence, a question arises: whether it is possible to
get the same or approximately the same crisp results from inference system when defuzzification
is applied. The answer is positive under the respective circumstances. The point of departure of
our considerations is the equality expressed in the form:
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The left-side part of that equality represents the defuzzified output of fuzzy implication based

inference system whereas the right-side part represents an inference system based on Mamdani's
composition (conjunctive interpretation of if-then rules).
The problem is to find such fuzzy implications (for the lefi-side part of the last equality),
conjunctive operators (in the right-side of this equality), aggregation operations and defuzzification
methods for both sides of the last equality in order to get the same crisp results. Generally, solving
such a problem causes difficulties. One of the most important reasons is the different nature of
fuzzy implication and conjunction (c.f. different truth table in classical logic). However, in special
cases, under some assumptions, a pragmatic solution exists. To show such a solution let us assume
for simplicity that the input fuzzy sets A' are singletons in x, (in this particular case FATI is
equivalent to FITA). The last equality can be rewritten in the simplified form:

=

T
‘5me{ kot I(A;k(ao),B"(y))}=
)
k=1
K

(29)

Vs
o { bl ake) xp B "(v)}

k=1

Because of the differences in aggregation operations, we accept the same for both sides of the
equality aggregation operation i.e. normalized arithmetic sum. Additionally, we assume different
defuzzification methods for both sides of the last equality, e.g. MISD, (modified indexed standard
defuzzifier) for the left-side and SD (standard defuzzifier) for the right-side. For our purposes we
will use as the left-side defuzzification method the method presented in the previous section named
MICOG,. For some fuzzy implications (e.g. Kleene-Dienes (max{1-a,b}), Lukasiewicz (min{1,
1-a+b}), Reichenbach (1-a+ab), Zadeh (max{1-a, min{a,b}}), Fodor (if a+b>1 then 1 else max{1-
a,b}) and others) we have:

K K X
@ =Eak=§4"@o)=§(l—r") (26)

k=1

where t* stands for firing degree of k-th rule.
However, for some fuzzy implications (e.g. Godel (if a<b then 1 else b), Standard Sequence (if
asb then 1 else 0), Goguen (if a=0 then min{1,b/a} else 1) and others) & equals zero.

As the right side defuzzification method the well known COG method can be used. Taking into
account the above mentioned assumptions and simplifications the last equality may be written as
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X

Y Ak ) >y BHO) 27)

k=1

K
MICOGu( y Id*x ). B "(y))) = COG

k=1

It should be pointed out here that the modification m MICOG, is responsible for elimination
of the non-informative part of output membership function B'(y) (if such a part exists). As it was
pointed out above.

The specific equivalence of inference results mentioned above can be seen straight on, if we
take e.g. Reichenbach fuzzy implication under assumption that & is computed by means of the
formula (26), as aggregation operation a normalized arithmetic sum is applied and the
defuzzification method MICOG, is represented by the formula (17) or (18). On the right side of
the formula (27) algebraic product operation is taken in order to get Larsen's inference system with
normalized arithmetic sum as aggregation operation and COG as defuzzification method. The
above mentioned equivalence can also be describe by the chain of identities:

K K X
MICOG, [Z Urx) +A* ) B "(y))L = MICOG, {E (l-t)+3 1,B "(y)L
k=1 k=1 k=1 eich.

K
= COG{E 1, B k(y)]L

k=1

I's (28)
(k)

K Tky

= HM[E rkB"(v)L T
k=1 arsen X

E T
k=1

eich.

K K
= MIHMd{Z €, + (1-a,)B "(y)L
k=1 k=1

eich.

Larsen

When we consider the Lukasiewicz fuzzy implication under assumption that e is also computed
using the formula (26), aggregation operation and MICOG, are the same as in the previous case
and on the right side of the formula (27), *; represents minimum, we get a well-known Mamdani's
inference system with normalized arithmetic sum as aggregation operation and COG as
defuzzification method. This equivalence can be described as follows:

K K
MICOG {E [1 /\(A"(z:o) + B "(y))]} = MICOG, {Z [IA( - <) +B "(y))}
k=1 L. k=1 L.

uk. uk.

K K X
= MICOGM{Z[I/\(ak+B"(y))]} = COG{Z[I/\(ak+B"(y))]—Zak} (29)
k=1 Li k=1 k=1 M

uk. amdani
X X

- COG{Z [a- a,,>AB"cv>]} - COG{E ["k/\Bk(V)]}
k=1 M k=1 M

amdani amdani
Such formulated equivalence may be also shown using the generalized bounded difference

c.£19]. In order to illustrate the considerations presented above some numerical examples will be
discussed below.

5. Numerical examples

A fuzzy knowledge base presented in Fig 1 is taken as a basis of numerical calculation carried
out here. Such knowledge base consisting of 9 fuzzy if-then rules may have practical meaning in
many fields e.g. fuzzy control, fuzzy modeling, decision support systems and others. Each rule
consists of two premises (e.g. error and change of error in the antecedent part of the rule and one
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conclusion (e.g. control) in consequent part. The fuzzy sets representing possible values of the
respective linguistic variables are also shown in Fig. 1.

Using such a knowledge base we can geometrically show the essence of the above discussed
equivalence. For all numerical examples the 'and' connective is considered to be an algebraic
product. Considering Reichenbach implication with the normalized arithmetic sum as the
aggregation operation and defuzzifier of MICOG, type (&'s are computed from the formula (26)),
the equivalence of inference results with those obtained on the basis of Larsen's product is
illustrated in Fig. 2. Taking into account the Lukasiewicz fuzzy implication with the same
aggregation operation and defuzzifier of MICOG, type for the same «'s as in the previous case,
the equivalence of inference results with inference results obtained on the basis of Mamdani's
minimum is shown in Fig. 3. If we use the defuzzifier MIHM, instead MICOG, in the last case,
then we get the same results as we got for Reichenbach implication. It means that the reduced
(clipped) conclusion fuzzy sets are transformed into scaled conclusion fuzzy sets. Let us notice
that the reduced fuzzy sets obtained using Lukasiewicz fuzzy implication include the scaled fuzzy
sets.

In Fig. 4. the inference results obtained on the basis of Kleene-Dienes fuzzy implication are
shown. However, the equivalence between the inference results obtained on the basis of this fuzzy
implication and inference results obtained using a conjunction is not found but applying the
defuzzifier MIHM,_ instead of MICOG, we get the same results as for Reichenbach fuzzy
implication (see Fig.4). Because of the inclusion of Kleene-Dienes conclusion fuzzy sets in
Reichenbach conclusion fuzzy sets the Kleene-Dienes conclusion fuzzy sets have to be respectively
rescaled in order to get the last ones.

An analogous situation occurs if Fodor fuzzy implication is considered. The equivalence
between the inference results obtained on the basis of this implication and results obtained by
means of a conjunction is also not found. However, using MIHM,, defuzzifier instead of MICOG,
we get the same results as for Reichenbach fuzzy implication as well. Additionally it should be also
pointed out that conclusion fuzzy sets obtained on the basis of Fodor fuzzy implication are not
included in conclusion fuzzy sets obtained on the basis of Reichenbach fuzzy implication.

The rule base depicted in Fig. 1 was tested by means of complete set of singletons for the
reason of fuzzy modeling of the function z = f{x,y) = -(x +y) / 2.

Four fuzzy implications (Reichenbach, Lukasiewicz, Kleene-Dienes and Fodor) were applied
in inference system with the normalized arithmetic sum as an aggregation operation and defuzzifier
of MICOG, type, where « is computed from (26) as well.

For the above mentioned fuzzy implications the resulting surfaces are presented in Figs 6-9.
These surfaces correspond to the surfaces obtained from the conjunctive based inference system.
The quality indexes ( Ay Avax) Characterizing the quality of inference system may be defined as
follows:

2
L | -(x, +y.
AMSE = I_ljz : I(xi,yj)_ ( 12 yj)
i=1 j=1 (30)
_(xi +yj)
Ayax = max | I(x;,y) - Y
"?J

The values of the above mentioned indexes are gathered in Table 1. It should be pointed out that
both indexes for Reichenbach implication are equal to zero and for Lukasiewicz implication the
values of indexes are the same as for Mamdani's minimum.

The programming tool applied to these investigations was FDSS Fuzzy-Flou and Fuzzy Logic
toolbox for Matlab systems. Special procedures (m-files) concerning fuzzy implications and
modified COG methods were written into the last mentioned toolbox.
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Table 1.
Implication name AmsE AMax
Kleene-Dienes 0,005428 0,1463
Reichenbach 0 0
Lukasiewicz 0,000524 0,0446
Fodor 0,000287 0,0418
/N><Z><P\Premises MFs 18O
N

AN_N z P
r{ ZE {NM | NB

NBNMZEPM PB

z| PM| ZE |NM

-1 [ 1
N| PB | PM | ZE Conclusion MFs

| a1+ a2

NN
e\
(VAN

Fig. 1. Fuzzy knowledge base.

Fig. 2. An illustration of the equivalence of inference
results (Reichenbach f imp. versus Larsen's product).

A B'(Y) y
B'(f'/)'
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A B'O)
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Fig. 3. An illustration of the equivalence of inferenceFig. 4. An illustration of the equivalence of inference

results (Lukasiewicz f.imp. versus Mamdani's minimum). results (Kleene-Dienes f.imp. and Reichenbach f.imp.).
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B'(y)

o2 V

\
LN N\

Fig. 5. An illustration of the equivalence of inference
results (Fodor f.imp. and Reichenbach f.imp.).

Fig. 6. Output surface for Reichenbach fuzzy implication

— — Fig. 8. Output surface for Kleene-Dienes fuzzy
Fig. 7. Output surface for Lukasiewicz fuzzy implication.  jmpjication.

Fig. 9. Output surface for Fodor fuzzy implication
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6. Conclusions

In this paper a specific type of equivalence of inference results using fuzzy implication
(Reichenbach and Lukasiewicz) interpretation and the respective conjunctive (Larsen and
Mamdani) interpretation of the if-then rules has been discussed. Such equivalence is important
regarding the inference algorithm construction. The inference algorithms based on conjunctive
operators in some cases seem to be faster, simpler and more exact than the algorithms of fuzzy
implication based inference system. However, the interpretation of the fuzzy if-then rules based
on fuzzy implications is sounder from logical point of view.

For future research, the equivalence mentioned above should be considered more deeply from
mathematical point of view.
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