P-Evanescent Fuzzy Set-Valued Stochastic Processes

G. H. Tang, S. K. Li

Department of Mathematics, Air Force Institute of Meteorology , Nanjing Jiangsu China 211101 N. Yao

Wuhan Economic Institute, Wuhan Hubei China 430035

Abstract: The concept of P-evanescent fuzzy set-valued stochastic process is proposed. A comparison between two fuzzy set-valued stochastic process is made. Further it is proved that a P-evanesent fuzzy set-valued stochastic process whose trajectories are (h) right continuous is a predictable fuzzy set-valued stochastic process.

Keywords: Fuzzy sets, set-valued, stochastic process, probability, predictable, P-evanescent.

1.Introduction

The theory of fuzzy set-valued stochastic process has been studied in [1] [2],. But there are still many properties of fuzzy set-valued stochastic process to be studied. This paper *patrons is to discuss a comparison between two fuzzy set-valued stochastic process and the relationship between P-evanescent fuzzy set-valued stochastic process and predictable fuzzy set-valued stochastic process. It is proven that a P-evanesent fuzzy set-valued stochastic process whose trajectories are (h) right continuous is a predictable fuzzy set-valued stochastic process.

For convenience, in section 2 we first introduce some basic definitions and results about fuzzy set-valued random variable, which may be found in [1], [2]. In section 3, we will give the main results, i.e. theorem 1 and theorem 2 and their proofs.

2. Basic notions of fuzzy set-valued stochastic process

Task subsidized by Air fore of China

Let X be a n-dimension Euclidean space, $(\Omega, \mathfrak{F}, P)$ be a complete probability measure space, $\{\mathfrak{F}_i\}_{i\in R_+}$ be a family of monotone increasing sub- σ -fields of $\mathfrak{F}, \quad \mathfrak{F}_{\infty-} = \bigvee_{i\in R_+} \mathfrak{F}_i$, $\mathfrak{F}_{\infty-} \subset \mathfrak{F}_{\infty}$ and $\mathfrak{F}_{0-} \subset \mathfrak{F}_{0-} \subset \mathfrak{F}_{\infty}$

Let $\widetilde{F}_0(X)$ be the family of all fuzzy sets $\widetilde{A}: X \to [0,1]$ with properties:

- (1) \widetilde{A} is upper semicontinuous,
- (2) \widetilde{A} is fuzzy covex,
- (3) \widetilde{A}_{α} is compact, for every $\alpha \in (0,1]$,

where $\widetilde{A}_{\alpha} = \{x \in X: \widetilde{A}(x) \ge \alpha \}$ is the α -level set of \widetilde{A} .

If
$$\widetilde{A}$$
, $\widetilde{B} \in \widetilde{F}_0(X)$, define the distance between \widetilde{A} and \widetilde{B} by $d(\widetilde{A},\widetilde{B}) = \sup_{\alpha>0} h(\widetilde{A}_{\alpha},\widetilde{B}_{\alpha})$

where h denotes the Hausdorff distance.

 $(\widetilde{F}_0(X),d)$ is a complete metric space.

A linear structure is defined in ($\widetilde{F}_0(X)$,d) by

$$(\widetilde{A} + \widetilde{B})(x) = \sup \{\alpha \in [0,1]: x \in (\widetilde{A}_{\alpha}, + \widetilde{B}_{\alpha})\}$$

$$(\lambda \widetilde{A})(x) = \begin{cases} \widetilde{A}(\lambda^{-1}x), & \text{if } \lambda \neq 0, \\ 0, & \text{if } \lambda = 0, \quad x \neq 0, \\ \sup_{y \in X} \widetilde{A}(y), & \text{if } \lambda = 0, \quad x = 0, \end{cases}$$

for \widetilde{A} , $\widetilde{B} \in (\widetilde{F}_0(X), d)$, $\lambda \in \mathbb{R}$. It is easy to prove that $(\widetilde{A} + \widetilde{B})_{\alpha} = \widetilde{A}_{\alpha} + \widetilde{B}_{\alpha}$, $(\lambda \widetilde{A})_{\alpha} = \lambda \widetilde{A}_{\alpha}$ for every $\alpha \in [0,1]$.

Definition 1. Let $\widetilde{F}: (\Omega, \mathfrak{I}) \to (\widetilde{F}_0(X), d)$ be a mapping from (Ω, \mathfrak{I}) to $(\widetilde{F}_0(X), d)$.

(1) $\ \widetilde{F}\$ is called a fuzzy set-valued random variable, if

$$\{\omega : \sup_{y \in C} (\widetilde{F})(\omega)(x) \in B\} \subseteq \mathfrak{I}$$

for any subset C of X and Borel's subset B of [0,1], i.e. B \bigoplus ([0,1]).

(2) \widetilde{F} is called \mathfrak{I} —level measurable if \widetilde{F}_{α} defined by $(\widetilde{F})_{\alpha}(\omega)=(\widetilde{F}(\omega))_{\alpha}$ for each $\omega \in \Omega$

is a random set for every $\alpha \in (0,1]$.

The following two properties are equivalent:

- (1) \widetilde{F} is a fuzzy set-valued random variable.
- (2) \widetilde{F} is \Im -level measurable See theorem 1.5.1 in [2].

Definition.2. A family $\{\widetilde{F}_t\}_{t \in T}$ of fuzzy set-valued random variable is called a fuzzy set-valued stochastic process with pramatric set T.

Definition 3. (1) A subset Λ of $R_+ \times \Omega$ is called P-evanescent, if projection $\pi(\Lambda)$ of Λ on Ω is a P-zero probability set, i.e. $P(\pi(\Lambda))=0$.

- (2) A set-valued stochastic process $F = \{F_i\}_{i \in R_+}$ is called evanescent if the set $[(t, \omega): F_i(\omega) \neq \{0\}]$ is a P-evancscent set.
- (3) A fuzzy set-valued stochastic process $\widetilde{F} = \{\widetilde{F}_i\}_{i \in R_+}$ is called a P-evanscent fuzzy set-valued stochastic process, if the set

$$[(t,\omega):\widetilde{F}_{t}(\omega) \neq \{0\}]$$
 is a P- evanscent set.

Definition 4. (1) Two set-valued stochastic processes $F = \{F_i\}_{i \in R_+}$ and $G = \{G_i\}_{i \in R_+}$ is called P-indistinguishable and denoted as F = G, if the set

$$[[(t,\omega):F_{\iota}(\omega)\neq G_{\iota}(\omega)]$$

is a P- evanscent set. G is said to be no less than F and denoted as $F \subseteq G$ if the set

$$[(t,\omega):F_{\iota}(\omega) \not\subset G_{\iota}(\omega)]$$

is a P- evanscent set.

(2) Two fuzzy set-valued stochastic processes $\widetilde{F} = \{\widetilde{F}_i\}_{i \in R_+}$ and $\widetilde{G} = \{\widetilde{G}_i\}_{i \in R_i}$ is called P-indistinguishable and denoted as $\widetilde{F} = \widetilde{G}$, if the set

$$[[(t,\omega):\widetilde{F}_{\iota}(\omega)\neq\widetilde{G}_{\iota}(\omega)]$$

is a P- evanscent set. \widetilde{G} is said to be no less than \widetilde{F} and denoted as $\widetilde{F} \subseteq \widetilde{G}$ if the set $[(t,\omega)\colon \widetilde{F}_t(\omega) \not\subset \widetilde{G}_t(\omega)]$ is a P- evanscent set.

3. Main theorems and their proofs

Theorem 1. Let $\widetilde{F} = \{\widetilde{F}_i\}_{i \in R_+}$ and $\widetilde{G} = \{\widetilde{G}_i\}_{i \in R_+}$ be two optional (resp. predictable) fuzzy setvalued stochastic processes. Then \widetilde{G} is no less than \widetilde{F} if $\widetilde{F}_T \subseteq \widetilde{G}_T$ a.s. for each bounded stopping time (resp. predictable time) T.

In order to prove theorem 1, we first give the following lemma.

Lemma 1. Let $F = \{F_i\}_{i \in R_+}$ and $G = \{G_i\}_{i \in R_+}$ be two optional (resp. predictable) set-valued stochastic processes. Then G is no less than F if $F_T \subseteq G_T$ a.s. for each bounded stopping time (resp. predictable time) T.

Proof. Since $F = \{F_i\}_{i \in R_+}$ and $G = \{G_i\}_{i \in R_+}$ are two optional (resp. predictable) set-valued stochastic processes. Suppose $A = \{(t, \omega) : F_i(\omega) \not\subset G_i(\omega)\}$ is a P-nonevanescent set. But

$$A = \{(t, \omega): F_t(\omega) \not\subset G_t(\omega)\} = \{\bigcap_{n=1}^{\infty} [(t, \omega): f_t^{(n)}(\omega) \in G_t(\omega)]\}^c \in \emptyset \text{ (resp. } \mathcal{P}),$$

where $F_{\ell}(\omega) = cl\{f_{\ell}^{(n)}(\omega): n \geq 1\}$, $f_{\ell}^{(n)}$ is an optional (resp. predictable) selection of F_{ℓ} . Then A is an optional (resp. predictable) set. Thus there exists a stopping time (resp. predictable time) such that $[[S]] = \{(t, \omega): S(\omega) = t\} \subset A$ and $P([S < \infty]) > 0$ by the section theorem. Suppose c is a constant number such that $P([S \leq c]) > 0$. Let $T = S \wedge c$. Then T is a bounded time (resp. predictable time) and $F_{\ell}(\omega) \not\subset G_{\ell}(\omega)$ for $\omega \in [S \leq c]$. This is in contradction with the assumption. Then A must be a P-evanescent set. Hence the set-valued stochastic process G is no less than the set-valued stochastic process F.

The proof of theorem 1. Since \widetilde{F} and \widetilde{G} are two optional (resp. predictable) fuzzy set-valued

stochastic processes, then $\widetilde{F}_{\alpha} = \{(\widetilde{F}_{t})_{\alpha}\}_{t \in R_{+}}$ and $\widetilde{G}_{\alpha} = \{(G_{t})_{\alpha}\}_{t \in R_{+}}$ are two optional (resp. predictable) set-valued stochastic processes for each $\alpha \in (0,1]$.

Since $\widetilde{F}_T \subset \widetilde{G}_T$ a.s. for each bounded stopping time (resp. predictable time) T, then $(\widetilde{F}_T)_{\alpha} \subset (\widetilde{G}_T)_{\alpha}$ a.s. for each $\alpha \in (0,1]$. Hence \widetilde{G}_{α} is no less than \widetilde{F}_{α} for each $\alpha \in (0,1]$ by lemma 1. But

$$\widetilde{F}_{t}(\omega)(x) = \bigvee_{\alpha \in \mathcal{O}_{t}} [\alpha \wedge I_{(\widetilde{F}_{t})_{\alpha}}(x)], \ \widetilde{G}_{t}(\omega)(x) = \bigvee_{\alpha \in \mathcal{O}_{t}} [\alpha \wedge I_{(\widetilde{G}_{t})_{\alpha}}(x)]$$

where Q_0 is the set of all rational numbers in (0,1]. Then

$$P\{\pi[(t,\omega):\widetilde{F}_{t}(\omega) \not\subset \widetilde{G}_{t}(\omega)]\}$$

$$= P\{\pi(\bigcup_{\alpha \in Q_{0}} [(t,\omega):(\widetilde{F}_{t})_{\alpha}(\omega) \not\subset (\widetilde{G}_{t})_{\alpha}(\omega)])\}$$

$$\leq \sum_{\alpha \in Q_{0}} P\{\pi[(t,\omega):(\widetilde{F}_{t})_{\alpha}(\omega) \not\subset (\widetilde{G}_{t})_{\alpha}(\omega)\}$$

$$= 0$$

Thus \widetilde{G} is no less than \widetilde{F} .

Corollary 1. Let $\widetilde{F} = \{\widetilde{F}_t\}_{t \in R_+}$ and $\widetilde{G} = \{\widetilde{G}_t\}_{t \in R_+}$ be two optional (resp. predictable) fuzzy set-valued stochastic processes. Then \widetilde{F} and \widetilde{G} are indistingushable, if $\widetilde{F}_T = \widetilde{G}_T$ a.s. for each bounded stopping time (resp. predictable time) T.

Theorem 2. Let $\{\mathfrak{I}_t\}_{t\in \overline{R}_+\cup\{0^-\}}$ be complete, i.e. \mathfrak{I}_{0^-} includes all P-zero probability sets. Then each (d) right continuous P-evanescent fuzzy set-valued stochastic process $\widetilde{F}=\{\widetilde{F}_t\}_{t\in \overline{R}_+\cup\{0^-\}}$ is a predictable fuzzy set-valued stochastic process.

In order to prove theorem 2, we first give the following lemma 2.

Lemma 2. Let $\{\mathfrak{I}_t\}_{t\in \overline{R}_+\cup\{0-\}}$ be complete. Then each (k) right continuous P-evanescent setvalued stochastic process $F=\{F_t\}_{t\in \overline{R}_+\cup\{0-\}}$ is a predictable set-valued stochastic process, where (k)

represents Kuratowski's sense.

Proof. Define $F^{(n)} = \{F_t^{(n)}\}_{t \in \overline{R}_+ \cup \{0-\}}$ as follows:

$$F_{t}^{(n)}(\omega) = F_{0}(\omega)I_{\{0\}}(t) + \sum_{k=0}^{\infty} F_{\frac{k+1}{n}}(\omega)I_{(\frac{k}{n},\frac{k+1}{n}]}(t)$$

for each $n \in \mathbb{N}$, $t \in R_+$ and $\omega \in \Omega$.

Since F is a p-evanescent set-valued stochastic process, then $F_0(\omega) = \{0\}$ a.s. and $F_{\frac{k+1}{n}}(\omega) = \{0\}$ a.s.. Therefore F_0 and $F_{\frac{k+1}{n}}$ are both \mathfrak{I}_{0-} -measurable, since $\{\mathfrak{I}_{\ell}\}_{\ell \in \overline{R}_+ \cup \{0-\}}$ is complete. Because the predictable σ -field $\ell = \sigma$ (ℓ), where

$$\mathcal{C} = \{\{0\} \times A: A \in \mathfrak{I}_{0-}\} \bigcup \{(s,t] \times A: 0 < s < t, s,t \in Q_+, A \in \bigcup_{r < s} \mathfrak{I}_r\}$$

and Q_{+} is the total of rational numbers in R_{+} . Then

$$\{(t,\omega): F_t^{(n)}(\omega) \cap G \neq \Phi\} = \{0\} \times [F_0 \cap G \neq \Phi] \cup (\bigcup_{k=0}^{\infty} (\frac{k}{n}, \frac{k+1}{n}) \times [F_{\frac{k+1}{n}} \cap G \neq \Phi]) \quad \mathcal{P},$$

where G is any open subset in X.. Then $F^{(n)}$ is a predictable set-valued stochastic process. Since $\{F_t\}_{t\in R_n}$ is (k) right continuous, then

(k)
$$\lim_{n\to\infty} F_{i}^{(n)}(\omega) = F_{i}(\omega)$$
, for $(t,\omega) \in R_{+} \times \Omega$.

Thus $F = \{F_i\}_{i \in R_i}$ is a predictable set-valued stochastic process.

The proof of theorem 2. Since $\widetilde{F} = \{F_i\}_{i \in R_+}$ is (d) right continuous P-evanescent fuzzy set-valued stochastic process, then $\widetilde{F}_{\alpha} = \{(\widetilde{F}_i)_{\alpha}\}_{i \in R_+}$ is a (h) right continuous compact set-valued stochastic process for each $\alpha \in (0,1]$, further $\widetilde{F}_{\alpha} = \{(\widetilde{F}_i)_{\alpha}\}_{i \in R_+}$ is a (k) right continuous compact set-valued stochastic process for each $\alpha \in (0,1]$ by theorem 1.5.33 in [4]. Since

$$0 = P P\{\pi[(t, \omega) : \widetilde{F}_{\iota}(\omega) \neq \{0\}]\} = P\{\pi(\bigcup_{\alpha \in Q_0} [(t, \omega) : (\widetilde{F}_{\iota})_{\alpha}(\omega) \neq \{0\}])\},$$

then $P\{\pi[(t,\omega):(\widetilde{F}_t)_{\alpha}(\omega)\neq\{0\}]\}=0$ for each $\alpha\in Q_0$. But $\{(\widetilde{F}_t)_{\alpha}\}_{t\in R_+}$ is a predictable

set-valued stochastic process for each $\alpha \in Q_0$ by lemma 2 and

$$(\widetilde{F}_{t}(\omega))(x) = \bigvee_{\alpha \in Q_{0}} (\alpha \wedge I_{(\widetilde{F}_{t})_{\alpha}(\omega)}(x)).$$

Thus $\widetilde{F} = \{F_t\}_{t \in \mathbb{R}}$ is a predictable fuzzy set-valued stochasic process.

References

- [1] S. K. Li, Random Sets and Set-valued Martingales (Guizhou Science Technical Press, Guizhou China, 1994) (in Chinese).
- [2] S. K. Li, G. H. Tang and H. Zhang, Some Properties of Fuzzy Set-Valued Martingales, BUSEFAL, 67.
- [3] W. X. Zhang, Z. P. Wang, and Y. Gao. (1996) Set-Valued Stochastic Processes, Science Publisher of China, Beijing China (in Chinese).
- [4] L.Lushu, Random Fuzzy sets and Fuzzy Martingales, Fzzy Sets and Systems 69 (1995) 181-193.
- [5] E. Klein and A. C. Thompson, (1984) Theory of Correspondences, John Wiley and Sons, New York.
- [6] J. A. Yan, (1981) Elemental Theory of Martingales and Stochastic Integral, Shanghai Science Technical Publisher, Shanghai China (in Chinese).
- [7] M. L. Puri and D. A. Ralscu, (1983) Differentials of Fuzzy Functions, J. Math. Anal. Appl. 2(92).
- [8] M. L. Puri and D. A. Ralscu, (1986), Fuzzy Random Variables, J. Math. Anal. Appl. 2(114).