Fuzzy Set-Valued Class(D) Stochastic Processes

S. K. Li

Department of Mathematics
Air Force Institute of Meteorology
Nanjing Jiangsu China (211101)

Abstract: The concepts of fuzzy set-valued class (D) stochastic process and measurable fuzzy set-valued stochastic process are given. It is proved that a fuzzy set-valued stochastic process whose almost all trajectories are (d) right continuous is measurable. The criterion of fuzzy set-valued class (D) stochastic process is got.

keywords: Fuzzy set, fuzzy set-valued random variable, fuzzy set-valued martingale, uniformly integrable family, fuzzy set-valued class (D) process.

1. Introduction

The theory of fuzzy set-valued stochastic process and fuzzy set-valued martingale have been studied in [1],[2],[3]. But there are still many properties of fuzzy set-valued martingale to be studied. This paper's pupose is to discuss the properties of fuzzy set-valued class (D) process and measurable fuzzy set-valued stochastic process e.t.. We will give the criterion of fuzzy set-valued class (D) stochastic process.

For convenience, in section 2 we first introduce some basic definitions and results of fuzzy set-valued stochastic process, which may be found in [1],[2]. We will give the main theorems in this paper and their proofs in section 3.

2. Some basic concepts of fuzzy set-valued stochastic process and main results

Let X be a n-dimension Euclidean space, $(\Omega, \mathfrak{I}, P)$ be a complete probability measure space,

Task subsidized by air force of China

 $\{\mathfrak{I}_{t}\}_{t\in R_{+}}$ be a family of monotone increasing sub- σ -fields of \mathfrak{I} , $\mathfrak{I}_{\infty-} = \bigvee_{t\in R_{+}} \mathfrak{I}_{t}$, \mathfrak{I}_{0-} , \mathfrak{I}_{∞} be sub- σ -fields of \mathfrak{I} and $\mathfrak{I}_{0-} \subset \mathfrak{I}_{0}$, $\mathfrak{I}_{-\infty} \subset \mathfrak{I}_{\infty}$ in this paper.

Let $\widetilde{F}_0(X)$ be the family of all fuzzy sets $\widetilde{A}: X \to [0,1]$ with properties:

- (1) \widetilde{A} is upper semicontinuous,
- (2) \widetilde{A} is fuzzy covex,
- (3) \widetilde{A}_{α} is compact, for every $\alpha \in (0,1]$,

where $\widetilde{A}_{\alpha} = \{x \in X: \widetilde{A}(x) \ge \alpha\}$ is the α -level set of \widetilde{A} .

If
$$\widetilde{A}$$
, $\widetilde{B} \in \widetilde{F}_0(X)$, define the metric between \widetilde{A} and \widetilde{B} by $d(\widetilde{A}, \widetilde{B}) = \sup_{\alpha>0} h(\widetilde{A}_{\alpha}, \widetilde{B}_{\alpha})$

where h denotes the Hausdorff metric.

 $(\widetilde{F}_0(X),d)$ is a complete metric space.

A linear structure is defined in $(\widetilde{F}_0(X), d)$ by $(\widetilde{A} + \widetilde{B})(x) = \sup \{ \alpha \in [0,1] : x \in (\widetilde{A}_{\alpha}, + \widetilde{B}_{\alpha}) \}$

$$(\lambda \widetilde{A})(\mathbf{x}) = \begin{cases} \widetilde{A}(\lambda^{-1}x), & \text{if } \lambda \neq 0, \\ 0, & \text{if } \lambda = 0, \quad x \neq 0, \\ \sup_{y \in X} \widetilde{A}(y), & \text{if } \lambda = 0, \quad x = 0, \end{cases}$$

for \widetilde{A} , $\widetilde{B} \in (\widetilde{F}_0(X), d)$, $\lambda \in \mathbb{R}$. It is easy to prove that $(\widetilde{A} + \widetilde{B})_{\alpha} = \widetilde{A}_{\alpha} + \widetilde{B}_{\alpha}$, $(\lambda \widetilde{A})_{\alpha} = \lambda \widetilde{A}_{\alpha}$ for every $\alpha \in [0,1]$.

Definition 2.1. Let $\widetilde{F}: (\Omega, \mathfrak{F}) \to (\widetilde{F}_0(X), d)$ be a mapping from (Ω, \mathfrak{F}) to $(\widetilde{F}_0(X), d)$.

(1) \widetilde{F} is called a fuzzy set-valued random variable, if $\{\omega : \sup_{v \in C} (\widetilde{F})(\omega)(x) \in B\} \in \mathfrak{F}$

for any subset C of X and Borel's subset B of [0,1], i.e. B \in **B** ([0,1]).

(2) \widetilde{F} is called \mathfrak{I} —level measurable, if \widetilde{F}_{α} defined by $(\widetilde{F})_{\alpha}(\omega) = (\widetilde{F}(\omega))_{\alpha}$ for every

 $\omega \in \Omega$ is a random set for every $\alpha \in (0,1]$.

Theorem 2.1 The following two propositions are equivalent:

- (1) \widetilde{F} is a fuzzy set-valued random variable.
- (2) \widetilde{F} is \Im -level measurable.

Proof. See theorem 1.5.1 in [1]

Definition 2.2. Let $\widetilde{F}: (\Omega, \mathfrak{I}) \to \widetilde{F}_0(X)$ be a fuzzy set-valued random variable, \widetilde{F} is called to

be integrable bounded if there exists a nonnegative integrable function f such that $\left\|\widetilde{F}_{\alpha}(\omega)\right\| < f(\omega) \text{ for each } \alpha \in (0,1] \text{ and } \omega \in \Omega \text{ ,}$ where $\left\|\widetilde{F}_{\alpha}(\omega)\right\| = h\{\{0\}, \ \widetilde{F}_{\alpha}(\omega)\}$

Define

$$(\int_{\Omega} \widetilde{F} dp)(x) = \bigvee_{\alpha \in [0,1]} (\alpha \wedge I_{\int_{\Omega} \widetilde{F}_{\alpha} dP}(x))$$

where $\int_{\Omega} \widetilde{F}_0 dP = X$ and call $\int_{\Omega} \widetilde{F} dP$ to be integral of \widetilde{F} on Ω .

Theorem 2.2. Let $\widetilde{F}: (\Omega, \mathfrak{I}) \to \widetilde{F}_0(X)$ be an integrable bounded fuzzy set-valued random variable, then $(\int_{\Omega} \widetilde{F} dP)_{\alpha} = \int_{\Omega} \widetilde{F}_{\alpha} dP$ for each $\alpha \in (0,1]$ and $\int_{\Omega} \widetilde{F} dP \neq \Phi$.

Proof: See theorem 6.5.3 in [1].

Theorem 2.3. Let $\widetilde{F}:(\Omega,\mathfrak{I})\to\widetilde{F}_0(X)$ be an integrable bounded fuzzy set-valued random variable, then for each sub- σ -field \mathfrak{I}_1 of \mathfrak{I}_2 , there exists an unique \mathfrak{I}_1 -measurable fuzzy set-valued random variable \widetilde{G} such that $\int_A \widetilde{F} dP = \int_A \widetilde{G} dP$ for each $A\in\mathfrak{I}_1$.

Proof: See theorem 6.5.4 [1].

Definition 2.3. Let $\widetilde{F}: (\Omega, \mathfrak{I}) \to \widetilde{F}_0(X)$ be an integrable bounded fuzzy set-valued random variable, \mathfrak{I}_1 be a sub- σ -field of \mathfrak{I} . $\widetilde{G}: (\Omega, \mathfrak{I}) \to \widetilde{F}_0(X)$ is called a conditional expectation

of \widetilde{F} with respect to the sub- σ -field \Im_1 of \Im , and is denoted as $\mathrm{E}[\,\widetilde{F}\,\,\big|\, \Im_1\,]$, if \widetilde{G} is a \Im_1 -

measurable integrable bounded fuzzy set-valued random variable satisfying the following condition:

$$\int_{A} \widetilde{F} dP = \int_{A} \widetilde{G} dP \quad \text{for each } A \in \mathfrak{I}_{1}.$$

The conditional expectation of \widetilde{F} with respect to the sub- σ -field \mathfrak{I}_1 of \mathfrak{I} is existent and a.s. unique and $(\mathrm{E}[\widetilde{F}|\mathfrak{I}_1](\omega))_{\alpha} = \mathrm{E}[\widetilde{F}_{\alpha}|\mathfrak{I}_1](\omega)$ a.s. by theorem 2.2, theorem 2.3.

Definition 2.4. Let T be a set. The family of fuzzy random variables $\{\widetilde{F}_{t}\}_{t\in T}$ is called a fuzzy set-valued stochastic process with the set T of parameters.

Definition 2.5. Let $\{\mathfrak{I}_{t}\}_{t\in R_{+}}$ be a family of sub- σ -fields of $\mathfrak{I}, \{\widetilde{F}_{t}\}_{t\in R_{+}}$ be a $\{\mathfrak{I}_{t}\}_{t\in R_{+}}$ adapted integrably bounded fuzzy set-valued stochastic process, i.e. \widetilde{F}_{t} is \mathfrak{I}_{t} -measurable and integrably bounded for each $t\in R_{+}$. $\{\widetilde{F}_{t},\mathfrak{I}_{t\in R_{+}}\}_{t\in R_{+}}$ is said to be a fuzzy set-valued martingale (resp. supermartingale, submartingale) if

$$E[\widetilde{F}_t | \mathfrak{I}_s] = \widetilde{F}_s \text{ (resp. } \subseteq \widetilde{F}_s, \supseteq \widetilde{F}_s \text{) a.s. for s < t, s, t } \in R_+.$$

Definition 2.6. A real function T defined on (Ω, \Im) is called a $\{\Im_t\}_{t \in R_+}$ stopping time if $\{\omega : T(\omega) \le t\} \in \Im_t$ for each $t \in R_+$.

Definition 2.7. A fuzzy set-valued stochastic process $\{\widetilde{F}_{t}\}_{t \in \mathbb{R}_{+}}$ is called measurable if $\{(t, \omega): \sup_{x \in C} \widetilde{F}_{t}(\omega)(x) \in B\} \in \mathbf{B}(\mathbb{R}_{+}) \times \mathfrak{I}$

for any closed C of X and any Borel's subset B of [0,1].

A $\{\mathfrak{I}_t\}_{t\in R_+}$ -adapted fuzzy set-valued stochastic process $\{\widetilde{F}_t\}_{t\in R_+}$ is called progressive measurable if

$$\{(s, \omega) \in [0,t] \times \Omega : \sup_{x \in C} \widetilde{F}_s(\omega)(x) \in B \} \in \mathbf{B} ([0,t]) \times \mathfrak{I}_t.$$

Definition 2.8. A family of fuzzy set-valued variables $\{\widetilde{F}_t:t\in T\}$ is said to be uniformly integrable if

 $\lim_{c\to +\infty} \int_{\{\omega: \|(\widetilde{F}_t)_{\alpha}(\omega)\| \geq c\}} \|(\widetilde{F}_t)_{\alpha}\| dp = 0 \text{ uniformly holds for } t \in T \text{ and } \alpha \in (0,1],$

where $\|(\widetilde{F}_t)_{\alpha}(\omega)\| = h(\{0\}, (\widetilde{F}_t)_{\alpha}(\omega))$ is the Hausdorff metric between $\{0\}$ and $(\widetilde{F}_t)_{\alpha}(\omega)$.

Definition 2.9. A $\{\mathfrak{I}_t\}_{t\in R_+}$ -adapted measurable fuzzy set-valued stochastic process $\{\widetilde{F}_t\}_{t\in R_+}$ is said to be a fuzzy set-valued class (D) process if $\{\widetilde{F}_TI_{[T<\infty]}\colon T\in\mathfrak{R}\}$ is uniformly integrable, where \mathfrak{R} is the set of all $\{\mathfrak{I}_t\}_{t\in R_+}$ stopping times.

Respectively,when $\{F_t\}_{t\in R_+}$ is $\{\mathfrak{F}_t\}_{t\in R_+}$ -adapted set-valued stochastic process,we also define some concepts like those above concepts of fuzzy set-valued stochastic process.

3. Main theorems and their proofs

Theorem 3.1. If almost all trajectories of a fuzzy set-valued stochastic process $\{\widetilde{F}_{t}\}_{t\in R_{+}}$ are right continuous with respect to the metric d, then $\{\widetilde{F}_{t}\}_{t\in R_{+}}$ is a measurable fuzzy set-valued stochastic process.

Proof. Since almost all trajectories of $\{\widetilde{F}_t\}_{t\in R_+}$ are right continuous, there exists a

 $N \in \mathfrak{I}$, P(N)=0 such that

$$\lim_{t \to t_0 \atop t > t_0} d(\widetilde{F}_t(\omega), \widetilde{F}_{t_0}(\omega)) = \lim_{t \to t_0 \atop t > t_0} \{ \sup_{\alpha \in (0,1]} h((\widetilde{F}_t)_{\alpha}(\omega), (\widetilde{F}_{t_0})_{\alpha}(\omega)) \} = 0$$

for $t_0 \in R_+$, $\omega \notin N$. Then

$$\lim_{\substack{t \to t_0 \\ t > t_0}} h((\widetilde{F}_t)_{\alpha}(\omega), (\widetilde{F}_{t_0})_{\alpha}(\omega)) = \lim_{\substack{t \to t_0 \\ t > t_0}} \left\{ \sup_{x \in X} \left| d_{\varepsilon}(x, (\widetilde{F}_t)_{\alpha}(\omega)) - d_{\varepsilon}(x, (\widetilde{F}_{t_0})_{\alpha}(\omega)) \right| \right\} = 0$$

for each $\alpha \in (0,1]$, where d_{\varepsilon} is the metric in Euclid space X. Hence

$$\lim_{t \to t_0 \atop t \neq t_0} d_{\varepsilon}(x, (\widetilde{F}_t)_{\alpha}(\omega)) = d_{\varepsilon}(x, (\widetilde{F}_{t_0})_{\alpha}(\omega))$$

for each $x \in X$. Therefore $\{d_{\varepsilon}(x, (\widetilde{F}_t)_{\alpha}(\omega))\}_{t \in R_+}$ is a stochastic process whose almost all trajectories are continuous for each $\alpha \in (0,1]$. Thus $\{d_{\varepsilon}(x, (\widetilde{F}_t)_{\alpha}(\omega))\}_{t \in R_+}$ is a measurable stochastic process for each $\alpha \in (0,1]$ and futher $\{(\widetilde{F}_t)_{\alpha}\}_{t \in R_+}$ is a measurable set-valued stochastic process for each $\alpha \in (0,1]$. Thereby $\{\widetilde{F}_t\}_{t \in R_+}$ is a measurable fuzzy set-valued stochastic process.

Theorem 3.2. Let $\{\widetilde{F}_t\}_{t\in R_+}$ be a $\{\mathfrak{F}_t\}_{t\in R_+}$ -adapted fuzzy set-valued stochastic process whose all trajectories are right continuous with respect to the metric d. Then $\{\widetilde{F}_t\}_{t\in R_+}$ is a progressive measurable fuzzy set-valued stochastic process.

In order to prove this theorem, firstly we give the following lemma.

Lemma 3.1. Let $\{F_t\}_{t \in R_+}$ be a $\{\mathfrak{I}_t\}_{t \in R_+}$ -adapted set-valued stochastic process whose trajectories are right continuous with respect to the metric h. Let F_t be integrably bounded for each $t \in R_+$. Then $\{F_t\}_{t \in R_+}$ is a progressive measurable set-valued stochastic process.

Proof. Define a sequence of set-valued stochastic processes $\{F_s^{(n)}\}_{s \in [0,t]}$ as the following:

$$F_s^{(n)}(\omega) = F_0(\omega)I_{[S=0]} + \sum_{k=1}^{2^n} F_{\frac{kt}{2^n}}(\omega)I_{[\frac{(k-1)t}{2^n},\frac{kt}{2^n}]}(s).$$

Then

$$\{(s,\omega)\in[0,t]\times\Omega:F_s^{(n)}(\omega)\cap G\neq\Phi\}$$

$$=\{0\}\times [\omega:F_0(\omega)\cap G\neq \Phi]\cup \{\bigcup_{k=1}^{2^n}[\frac{(k-1)t}{2^n},\frac{kt}{2^n}]\times [\omega:F_{\frac{kt}{2^n}}(\omega)\cap G\neq \Phi]\}\in \mathbf{B}([0,t])\times \mathfrak{I}_t$$

for each open subset G of X.. Thus

$$\{(s,\omega) \in [0,t] \times \Omega : d_{\varepsilon}(x,F_s^{(n)}(\omega)) < r\} \in \mathbf{B}([0,t]) \times \mathfrak{I}_{\varepsilon}$$

for each $r \in R$ and $x \in X$ by corollary 1.1.2 in [1].

Since
$$\lim_{n\to\infty} h(F_s^{(n)}(\omega), F_s(\omega)) = \lim_{n\to\infty} \{ \sup_{x\in X} \left| d_{\varepsilon}(x, F_s^{(n)}(\omega)) - d_{\varepsilon}(x, F_s(\omega)) \right| \} = 0$$
, then

$$\lim_{n\to\infty} d_{\varepsilon}(x, F_s^{(n)}(\omega)) = d_{\varepsilon}(x, F_s(\omega)). \text{ Hence}$$

$$\{(s,\omega) \in [0,t] \times \Omega : d_{\varepsilon}(x,F_s(\omega)) < r\} \in \mathbf{B}([0,t]) \times \mathfrak{I}_t$$
 for each $r \in \mathbb{R}$ and $x \in \mathbb{X}$. Thus $\{(s,\omega) : F_s(\omega) \cap G \neq \Phi\} \in \mathbf{B}([0,t]) \times \mathfrak{I}_t$ by corollary 1.1.2 in [1]. Therefore $\{F_t\}_{t \in \mathbb{R}_+}$ is progressive measurable.

Proof of theorem 3.2: Since $\{\widetilde{F}_t\}_{t\in R_+}$ is a $\{\mathfrak{I}_t\}_{t\in R_+}$ -adapted fuzzy set-valued stochastic process whose trajectories are right continuous with respect to the metric d, for each $\alpha \in (0,1]$, $\{(\widetilde{F}_t)_{\alpha}\}_{t\in R_+}$ is a $\{\mathfrak{I}_t\}_{t\in R_+}$ -adapted set-valued stochastic process whose trajectories are right continuous with respect to the Hausdorff metric h.. Then $\{(\widetilde{F}_t)_{\alpha}\}_{t\in R_+}$ is a progressive measurable set-valued stochastic process for each $\alpha \in (0,1]$ by lemma 3.1. Therefore $\{\widetilde{F}_t\}_{t\in R_+}$ is a progressive measurable fuzzy set-valued stochastic process by theorem 2.1.

Theorem 3.3. Suppose $\{\widetilde{F}_t\}_{t\in\overline{R}_+}$ is a $\{\mathfrak{I}_t\}_{t\in\overline{R}_+}$ -adapted progressive fuzzy set-valued stochastic process whose trajectories are left continuous with respect to the metric d, then $\widetilde{F}_TI_{[T<\infty]}$ and

$$\begin{split} \widetilde{F}_T &= \widetilde{F}_T I_{[T < \infty]} + \widetilde{F}_\infty I_{[T = \infty]} \text{ are } \mathfrak{I}_T \text{ -measurable for every } \left\{\mathfrak{I}_t\right\}_{t \in \overline{R}_+} \text{ -stopping time T, where } \\ \mathfrak{I}_T &= \left\{A \in \mathfrak{I}_\infty : A \cap [T \le t] \in \mathfrak{I}_t \text{ for each } t \in R_+\right\}. \end{split}$$

In order to prove theorem 3.3 we first give the following lemma, i.e., lemma 3.2.

Lemma 3.2. Suppose $\{F_t\}_{t\in\overline{R}_+}$ is a $\{\mathfrak{I}_t\}_{t\in\overline{R}_+}$ -adapted progressive set-valued stochastic process whose trajectories are left continuous with respect to the Hausdorff metric h, then $F_TI_{[T<\infty]}$ and $F_T=F_TI_{[T<\infty]}+F_\infty I_{[T=\infty]}$ are \mathfrak{I}_T -measurable for every $\{\mathfrak{I}_t\}_{t\in\overline{R}_+}$ -stopping time T.

Proof. For each $\{\mathfrak{I}_t\}_{t\in\overline{R}_+}$ -stopping time T, since $T\wedge t$ is \mathfrak{I}_t -measurable for each $t\in\overline{R}_+$, and $F_{T\wedge t}$ can be considered as the composition of the measurable mapping $\omega\mapsto (T(\omega)\wedge t,\omega)$ from (Ω,\mathfrak{I}_t) to $([0,t]\times\Omega,\mathbf{B}([0,t])\times\mathfrak{I}_t)$ and the measurable setvalued mapping $(s,\omega)\mapsto F_s(\omega)$ from $([0,t]\times\Omega,\mathbf{B}([0,t])\times\mathfrak{I}_t)$ to X. Then $F_{T\wedge t}$ is \mathfrak{I}_t -measurable, further

$$[\,F_TI_{[T<\infty]}\cap G\neq\Phi\,]\cap[T\leq t\,]=[\,F_{T\wedge t}\cap G\neq\Phi\,]\cap[T\leq t\,]\in\mathfrak{T}_t$$

for any open subset G of X and

$$F_T I_{[T<\infty]} = F_T \lim_{n \to \infty} I_{[T< n]} = \lim_{n \to \infty} F_{T \wedge n} I_{[T< n]}$$

with respect to the Hausdorff metric h by the continuity of $\{F_t\}_{t\in\overline{R}_+}$. Then $F_TI_{[T<\infty]}$ is \mathfrak{I}_{∞} -measurable. Consequently $[F_TI_{[T<\infty]}\cap G\neq \Phi]\in \mathfrak{I}_T$ for any open subset G of X, i.e. $F_TI_{[T<\infty]}$ is \mathfrak{I}_T -measurable for each $\{\mathfrak{I}_t\}_{t\in\overline{R}_+}$ -stopping T.

It can be proved easyly by similar method that $F_T = F_T I_{[T < \infty]} + F_\infty I_{[T = \infty]}$ is \mathfrak{I}_T -measurable for each $\left\{\mathfrak{I}_t\right\}_{t \in \overline{R}_+}$ -stopping T .

Proof of theorem 3.3. Since for each $\alpha \in (0,1]$, $\{(F_t)_{\alpha}\}_{t \in \overline{R}_+}$ is a $\{\mathfrak{I}_t\}_{t \in \overline{R}_+}$ -adapted progressive set-valued stochastic process, and its trajectories are left continuous with respect to the Hausdorff metric h, then $(\widetilde{F}_T)_{\alpha}I_{[T<\infty]}$ and

$$(\widetilde{F}_T)_\alpha = (\widetilde{F}_T)_\alpha \, I_{[T < \infty]} + (\ \widetilde{F}_\infty)_\alpha \, I_{[T = \infty]} \ \text{ are both } \ \mathfrak{T}_T \ \text{-measurable for each } \ \{\mathfrak{T}_t\}_{t \in \overline{R}_+} \text{-}$$

stopping T by lemma 3.2. Thus $\widetilde{F}_T I_{[T<\infty]}$ and $\widetilde{F}_T = \widetilde{F}_T I_{[T<\infty]} + \widetilde{F}_\infty I_{[T=\infty]}$ are both \mathfrak{I}_T -measurable for each $\{\mathfrak{I}_t\}_{t\in\overline{R}_t}$ -stopping time T by theorem 2.1.

Theorem 3.4. Let $\{\widetilde{F}_t; \mathfrak{I}_t\}_{t \in \overline{R}_+}$ be a fuzzy set-valued submartingale and its almost all trajectories be right continuous with respect to the metric d, then $\{\widetilde{F}_t\}_{t \in \overline{R}_+}$ is a fuzzy set-valued class (D) stochastic process.

Proof. By asumption and theorem 3.1, $\{\widetilde{F}_t\}_{t\in\overline{R}_+}$ is a measurable fuzzy set-valued stochastic process and \widetilde{F}_{∞} is integrable bounded. Then $\{E[\widetilde{F}_{\infty}|\mathfrak{I}_T]\}_{T\in\overline{\mathfrak{R}}}$ is uniformly integrable by theorem 4.3 in [3], where $\overline{\mathfrak{R}}$ is the set of all $\{\mathfrak{I}_t\}_{t\in\overline{R}_+}$ -stopping times and $E[\widetilde{F}_{\infty}|\mathfrak{I}_T]\supseteq\widetilde{F}_T$ a.s. by theorem 3.4 in [2]. Therefore $\{\widetilde{F}_T\}_{T\in\overline{\mathfrak{R}}}$ is uniformly integrable by theorem 4.1 in [3]. Since $\|(\widetilde{F}_TI_{T<\infty})_{\alpha}\| \le \|(\widetilde{F}_TI_{T<\infty})_{\alpha}\|$ for $\alpha \in (0,1]$, then $\{(\widetilde{F}_TI_{T<\infty})_{\alpha}: T\in\overline{\mathfrak{R}}, \ \alpha \in (0,1]\}$ is uniformly integrable. Thus $\{\widetilde{F}_TI_{T<\infty}: T\in\overline{\mathfrak{R}}\}$ is uniformly integrable. Further $\{\widetilde{F}_t\}_{t\in\overline{R}_+}$ is a fuzzy set-valued class (D) stochastic process.

References

- [1] S. K. Li, Random Sets and Set-valued Martingales (Guizhou Science Technical Press, Guizhou China, 1994) (in Chinese).
- [2] S. K. Li, G. H. Tang and H. Zhang, Some Properties of Set-valued Martingales, Busefal 67 (1996) 38-48.
- [3] G. H. Tang, Q. L. Kong, S. K. Li & H. Zhang, Uniformly Integrable Family of Fuzzy Set-Valued Random Variables, Busefal 73 (1998).
- [4] L.Lushu, Random Fuzzy sets and Fuzzy Martingales, Fuzzy Sets and Systems **69** (1995) 181-193.
- [5] J. A. Yan, Elemental Theory of Martingales and Stochastic Integrals, (Shanghai Science Technical Press, Shanghai China, 1981) (in Chinese).
- [6] E. Klein, and A. C. Thompson, Theory of Correspondence (John Wiley and Sone, Inc, New York, 1984).
- [7] D. Zhang and C. Guo, Fuzzy Integrals of Set-valued Mappings and Fuzzy Mappings, Fuzzy Sets and Systems, **75** (1995) 103-111