THE LAW OF LARGE NUMBERS AND T-STABILITY FUZZY NUMBERS

R.R. Salakhutdinov, NC, USA

R.Z.Salakhutdinov, Scientific Industrial Union "Cybernetics" Tashkent Uzbekistan.

Introdused the concept T-stable membership function. When T-sum of fuzzy nambers with common T-stable membership function obey (or not obey) the law of large numbers for fuzzy nambers is representing.

Keywords: T-stable membership function, T-sum, Law of large numbers, Necessity.

1. Introduction. Let ξ_1 , ξ_2 ,... is a sequence of fuzzy numbers with common triangular membership function $\xi_i(x;m,\alpha) = 1 - |x-m_i|/\alpha$, if $m_i-\alpha \le x \le m_i+\alpha$; otherwise $\xi_i=0$. α - is its width; m_i - is its modal values; $(\alpha > 0, -\infty < m_i < \infty)$.

By $(\xi_1+\xi_2)_T$ denoted T-sum two fuzzy numbers ξ_1 , ξ_2 and its membership function defined as

$$(\xi_1+\xi_2)_{T(Z)} = \sup_{x+y=z} T(\xi_1(x), \xi_2(y)),$$

Here T is t-norm. As the examples of t-norms are Hamacher's (H_r) and Dombi's (D_q) operators [1,2]:

$$H_{r}(u,v) = \frac{uv}{r + (1-r)(u+v-uv)}, D_{q}(u,v) = \left\{1 + \left[\left(\frac{1-u}{u}\right)^{q} + \left(\frac{1-v}{v}\right)^{q}\right]^{1/q}\right\}^{-1}$$

$$r > 0$$

$$q > 0$$

Obviously, that for the tasks of applicable character it is interesting to study the behavior of the T-sum of fuzzy numbers $S_n = ((\xi_1 + \xi_2 + ... + \xi_n)/n)_T$ when $n \to \infty$.

In R.Fuller's paper [2] is shown that if t-norm T is weaker than ${\rm H}_0$ - Hamacher's operator, then is fairly the law of large numbers for symmetric triangular fuzzy numbers

$$\lim_{n \to \infty} \text{Nes} \left[M_{n}^{-\beta} \ll \left(\frac{\xi_{1}^{+} \xi_{2}^{+} \dots + \xi_{n}}{n} \right)_{T}^{} \ll M_{n}^{+\beta} \right] - 1,$$

$$M_{n} = \frac{m_{1}^{+} m_{2}^{+} \dots + m_{n}^{-\beta}}{n}$$

$$(1)$$

Here Nes (a< ξ < b) is interpreted as the grade of necessity of the statement " [a,b] contains the values of ξ ".

Our purpose is to investigate under which conditions for a membership function and T-summation will obey or not obey the law of large numbers.

2. Results.

A. Let's formulate the definition of T-stable membership function.

Definition 1. Let ξ_1 , ξ_2 are fuzzy numbers with common membership function $\xi(x; m, \{a^*\})$ and $\xi(x; k, \{b^*\})$. If membership function of the T-sum $(\xi_1+\xi_2)_T$ has the same membership function $\xi(x;h,\{c^*\})$, then membership function ξ is T-stable.

Here m, k, h - are corespondingly modal values; a^* , b^* , c^* are its coresponding vectors of the widths. Notice, for example, that in case of symmetric triangular numbers: $\{a^*\}=\alpha$, and in case L-R fuzzy numbers Dubois & Prade: $\{a^*\}=\{\alpha,\delta\}$.

If T(u,v) = min(u,v), then we have min-stable.

If T(u,v) = u*v, then we have Tp-stable.

If T(u,v) = max(0,u+v-1), then we have Tm-stable, ets.

Example 1. A symmetrical triangular membership function is min-stable. Let $\xi(x; m_1, \alpha_1)$ and $\xi(x; m_2, \alpha_2)$ are membership functions of triangular form, then from [3]: $\xi(x; m_1+m_2, \alpha_1+\alpha_2)$ is membership function of $(\xi_1+\xi_2)_T$.

Example 2. Gauchy's memebership function

$$\xi_{i}(x) = \xi(x; m_{i}, \alpha) = \exp\left(-\frac{(x-m_{i})^{2}}{\alpha^{2}}\right)$$
 is Tp-stable. Indeed, $(\xi_{1}+\xi_{2})_{Tp}(z) = \sup_{x+y=z} T_{p}(\xi_{1}(x), \xi_{2}(y)) = x+y=z$

=
$$\sup \{ \exp(-(x-m_1)/\alpha)^2 \star \exp(-(y-m_2)/\alpha)^2 \} = x+y=z$$

=
$$\sup \exp\{-(z-(m_1+m_2))/\alpha^2 + 2(x-m_1) (z-x-m_2)/\alpha^2\} = x$$

=
$$\exp\{[-(z-(m_1+m_2)) + 2(z-(m_1+m_2))/4]/\alpha^2\} = \xi(z;m_1+m_2,\alpha/2).$$

Example 3. Let we have $\xi_i(x) = \xi_i(x; 0, 1) = 1 - x^2$, $-1 \le x \le 1$; else $\xi_i(x) = 0$. Then $(\xi_1+\xi_2)_{Tm}(z) = \sup_{x+y=z} T_m(\xi_1(x), \xi_2(y)) = \sup_{x+y=z} (1-x^2 + 1-y^2 - 1) = x^2$

$$= \sup_{x \to y = z} (1 - (z^2 - 2xy)) = 1 - (z^2 - 2z^2/4) = 1 - z^2/2.$$

Hensé, we have here Tm-stable membership function.

Example 4. Assuming the following conditions for membership function [4]:

- 1. $\xi(x)$ has a modal value m, $\xi(m)=1$;
- 2. $\xi(x)$ is symmetric around m, $\xi(x-m) = \xi(m-x)$;
- 3. $\xi(x)$ is an increasing in the interval $(-\infty, m)$;

Let ξ_1 , ξ_2 be fuzzy numbers with common membership function $\xi(x;m,\{a^*\})$, that satisfies conditions 1-3, then ξ is min-stable.

Indeed, from Rao & Rashed theorem's [4] it follows that min-sum of $(\xi_1+\xi_2)_{min}$ has the same membership function ξ with a corresponding parameters.

Note. Membership function is interpreting as possibility distribution [1]. Due to this, could be introduce the notion of T-stable distribution of possibilities.

B. Further the grade of possibility of the statement "[a,b] contains the values of ξ " is defined by Pos(a $\xi \xi$ b) = Sup $\xi(x)$, [1,2].

From this it follows that, for a fuzzy numbers ξ with membership function $\xi(x) = \xi(x; m, \alpha)$, we can write Nes $(a \le x) = 1 - Pos(\xi \le x) = 1 - Sup \xi(x) = 1 - max(\xi(a), \xi(b))$.

In particular, for membership function that satisfyes conditions 1-3 from the example 4, we have

Nes
$$(m-\beta \ll \xi \ll m+\beta) = 1 - \sup_{\substack{X \leq m-\beta \\ x \geq m+\beta}} \xi(x) = 1 - \xi(\beta/\alpha), \quad \beta \leq \alpha$$
 (2)

Thus, substituting in the relationship (2) instead ξ (resp: $\xi(x)$), $S_n = ((\xi_1 + \xi_2 + \ldots + \xi_n)/n)_T$ (resp: its membership function), could be conclude is the law of large numbers fair or not.

Some considerations we are illustrating by table.

Membership function &	T-norm	Membership function S _n	T-sta- bility	Law of larg numbers
Symmetric triangular	H _O Hamacher	A/B A = $\xi(x; M_n, \alpha)$ B = n-(n-1) $\xi(x; M_n, \alpha)$	no	yes
Symmetric triangular	D _q Dombi	A/B A = $\xi(x; M_n \alpha), B = n - (n^1/q_1)\xi(x; M_n, \alpha)$ $\alpha > 0$	no	yes
Symmetric triangular	Tp	$\left\{\xi(x; M_n, \alpha)\right\}^n$	no	yes
Gauchy	Тр	$\left\{\xi(x; M_n, ot/2)^n\right\}$	no	yes
Symmetric triangular	min	ξ(x; M _n ,α)	yes	no

Note. Taking into consideration that $H^{\infty} \ll H_1 \ll ... \ll H_0 = D_1 \ll ... \ll D^{\infty} = \min$, we can improve of R.Fuller's result (1): If T < min, then the law of large numbers for symmetric triangular fuzzy numbers is fair [5].

Possible, that the law of large numbers is true, only for not T-stable membership function.

References

- [1] Dubois D., Prade H. Fuzzy sets and systems: theory and applications .-N.Y: Acad. Press, 1980, 340 p.
- [2] Fuller R. The law of large numbers for fuzzy numbers, BUSEFAL 40 (1989), 25-32.
- [3] Nahmias S. Fuzzy variables, Fuzzy Sets and Systems 1 (1978), 299-309
- [4] Rao M.B., Rashed A. Some comments on fuzzy variables, Fuzzy Sets and Systems, 6 (1981), 285-292
- [5] Salakhutdinov R.Z. On the law of large numbers for fuzzy numbers (to appear).