Role of clans in the proximities of intuitionistic fuzzy sets

¹S.K.Samanta, ²K.C.Chattopadhyay ²U.K.Mukherjee and ¹Tapas Kumar Mondal

¹Department of Mathematics, Visva-Bharati University Santiniketan-731235, W.Bengal, INDIA

> e-mail: root@vbharat.ernet.in FAX: (91) (03463) 52 672

²Department of Mathematics, Burdwan University Burdwan-713104, W.Bengal, INDIA

Abstract: Definitions of filters, grills, clans and proximities are given in intuitionistic fuzzy setting. It is proved that proximities of intuitionistic fuzzy sets is a clan generated structure.

Keywards: Intuitionistic fuzzy sets, filters, grills, clans and proximities of intuitionistic fuzzy sets.

0. Introduction

In [1] K.Atanassov and S.Stoeva defined intuitionistic fuzzy sets. Later on several authors worked on intuitionistic fuzzy sets. Among others mention may be made of Atanassov [2], [3], [4], Burillo and Bustince [5], [6], D.Çoker [8], [9] and Samanta et. el. [10], [11]. Atanassov and Bustince mainly worked on several operators and algebraic properties of intuitionistic fuzzy sets; where as D.Çoker, Samanta et. el. worked on topological structures of intuitionistic fuzzy sets.

In [7] Chattopadhyay, Samanta and Mukherjee fuzzified an important result of classical proximity

In [7] Chattopadhyay, Samanta and Mukherjee fuzzified an important result of classical proximity by proving that proximities of fuzzy sets are clan generated structer. In this paper we define a preproximity and a proximity of intuitionistic fuzzy sets and prove that proximities of intuitionistic fuzzy sets are clan generated structures.

1. Preliminaries and Notations

Definition 1.1 [1] Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS in short) A

is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

where the functions $\mu_A, \nu_A : X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\nu_A(x)$) of the element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$, for each $x \in X$.

Example 1.2 [1] Every fuzzy set A on a nonempty set X is obviously an IFS having the form

$$A = \{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle : x \in X \}.$$

Notation 1.3 IFSs are denoted by A, B, C, D etc with (or without) suffix. Set of all IFSs on X are denoted by I(X).

Definition 1.4 [1] Let $A, B \in I(X)$. Then

- (a) $A \subset B$ iff $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x), \forall x \in X$,
- (b) A = B iff $A \subset B$ and $B \subset A$,
- (c) $A^c = \{ \langle x, \nu_A(x), \mu_A(x) \rangle : x \in X \},$
- (d) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) >: x \in X \},$
- (e) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) >: x \in X \}.$

Definition 1.5 [8] $\tilde{0} = \{ \langle x, 0, 1 \rangle : x \in X \}$ and $\tilde{1} = \{ \langle x, 1, 0 \rangle : x \in X \}$.

Corollary 1.6 [8] Let $A, B \in I(X)$. Then

- (a) $(A \cup B)^c = A^c \cap B^c$,
- (b) $(A \cap B)^c = A^c \cup B^c$,
- (c) $(\tilde{1})^c = \tilde{0}$,
- (d) $(\tilde{0})^c = \tilde{1}$.

Definition 1.7 For $x \in X$, $p \in (0,1]$, $q \in [0,1)$ with $p+q \le 1$, an IFS A s.t.

$$\mu_A(x)=p,\ \nu_A(x)=q$$

and

$$\mu_A(y) = 0$$
, $\nu_A(y) = 1$, $\forall y \neq x \in X$

is called an intuitionistic fuzzy point (in short IFP) on X. This is denoted by $(p,q)_x$.

Notation 1.8 We denote J as an indexing set.

2. Filter, Grill, Prime filter of intuitionistic fuzzy sets

Definition 2.1 A stack S of IFSs on X is a subset of I(X) such that $A \supset B \in S \Rightarrow A \in S$.

Definition 2.2 A filter F of IFSs on X is a subset of I(X) satisfying the following:

 $F \neq \phi$

 $A\supset B\in F\Rightarrow A\in F$

 $A, B \in F \Rightarrow A \cap B \in F$.

A filter F of IFSs is called proper if $\tilde{0} \notin F$.

Definition 2.3 A Grill G of IFSs on X is a subset of I(X) satisfying the following:

Õ∉G

 $A\supset B\in G\Rightarrow A\in G$

 $A \cup B \in G \Rightarrow A \in G \text{ or } B \in G.$

A grill G of IFSs is called proper if $G \neq \phi$.

Definition 2.4 A stack V of IFSs on X is a prime filter of IFSs on X if it is a filter of IFSs on X and as well as a grill of IFSs on X.

A maximal proper filter U of IFSs is called an ultrafilter of IFSs.

 $\phi(X) = \text{Set of all filters of IFSs on } X.$

 $\Gamma(X) = \text{Set of all grills of IFSs on } X.$

 $\omega(X)$ = Set of all prime filters of IFSs on X.

Example 2.5 Let $A \in I(X)$. Define $F \subset I(X)$ by

$$F = \{B \in I(X) : B \supset A\}.$$

Now clearly $F \neq \phi$. Let $C \supset B \in F$. Then $C \supset B \supset A$ and hence $C \in F$. Again let $B, C \in F$ and so $\mu_B(x) \geq \mu_A(x)$, $\nu_B(x) \leq \nu_A(x)$ and $\mu_C(x) \geq \mu_A(x)$, $\nu_C(x) \leq \nu_A(x)$. It follows that $\mu_B(x) \land \mu_C(x) \geq \mu_A(x)$ and $\nu_B(x) \lor \nu_C(x) \leq \nu_A(x)$. Thus $B \cap C \supset A$ and therefore $B \cap C \in F$. Consequently F is a filter of IFSs.

Example 2.6 Let p > 0 and X be a nonempty set. Then

$$V_{\mathbf{z}_n} = \{A \in I(X) : \mu_A(x) \ge p\}$$

is a prime filter of IFSs on X.

Remark 2.7 It is to be noted that for IFP $(p,q)_x$, the collection

$$V_{(p,q)_n} = \{A \in I(X) : (p,q)_s \in A\}$$

is a filter but in general not a prime filter. In fact, it may not be a grill. To justify this take an ordinary set $X \neq \phi$. Let p = 0.2, q = 0.3 and a fixed $x \in X$. Let $A, B \in I(X)$ with $\mu_A(x) = 0.25$, $\nu_A(x) = 0.35$, $\mu_B(x) = 0.15$, $\nu_B(x) = 0.25$. Then $A \cup B \in V_{(p,q)_x}$ but $A \notin V_{(p,q)_x}$ and $B \notin V_{(p,q)_x}$.

Theorem 2.8 Let F^1 , $F^2 \in \phi(X)$ and G^1 , $G^2 \in \Gamma(X)$. Then

(1)
$$F^1 \cap F^2 \subset G^1 \Rightarrow F^1 \subset G^1$$
 or $F^2 \subset G^1$

(2)
$$F^1 \subset G^1 \cup G^2 \Rightarrow F^1 \subset G^1 \text{ or } F^1 \subset G^2$$
.

Theorem 2.9 Intersection of filters of IFSs is a filter of IFSs.

Theorem 2.10 Union of grills of IFSs is a grill of IFSs.

Definition 2.11 For each stack S of IFSs, define $dS = \{A : A^c \notin S\}$.

Theorem 2.12 If S (with or without suffixes) is a stack of IFSs, F is a filter of IFSs and G is a grill of IFSs on X, then followings hold:

- (1) $dS^1 \subset dS^2$ if $S^1 \supset S^2$,
- (2) d(dS) = S,
- $(3) d(\bigcup S^i) = \bigcap dS^i,$
- $(4) d(\cap S^i) = \bigcup dS^i,$
- (5) dF is a grill of IFSs,
- (6) dG is a filter of IFSs.

Theorem 2.13 If F is a filter of IFSs and G is a grill of IFSs such that $F \subset G$ then there exists a prime filter V of IFSs such that $F \subset V \subset G$.

Corollary 2.14 Let $G \subset I(X)$. Then G is a grill of IFSs on X iff it is a union of prime filter of IFSs on X.

3. Proximities of IFSs

Definition 3.1 A binary relation Δ on I(X) is said to be a basic preproximity of IFSs on X if it satisfies the following conditions:

- (1) $\tilde{0} \notin \Delta(A)$, $\forall A \in I(X)$,
- $(2) \Delta = \Delta^{-1},$

(3)
$$A \cup B \in \Delta(C) \Leftrightarrow A \in \Delta(C)$$
 or $B \in \Delta(C)$ where $\Delta(A) = \{B \in I(X) : (A, B) \in \Delta\}$.

A binary relation π on I(X) is said to be a basic proximity of IFSs on X if it is a preproximity of IFSs and X satisfies the condition

$$A \cap B \neq \tilde{0} \Rightarrow (A, B) \in \pi$$
.

When $\Delta(\pi)$ is a preproximity (proximity) of IFSs on X then X is called the reference set of $\Delta(\pi)$ and is denoted by $X(\Delta)(X(\pi))$.

Set of all basic preproximities (proximities) of IFSs on X is denoted by m(X)(M(X)).

In the sequel, we shall, in general, drop the prefix 'basic' and just talk of preproximities of IFSs and proximities of IFSs. The pair $(X, \Delta)((X, \pi))$ is called a preproximity space of IFSs (proximity space of IFSs) whenever $\Delta \in m(X)(\pi \in M(X))$.

Example 3.2 Let $T = \{(A,B) \in I(X) \times I(X) : A \cap B \neq \tilde{0}\}$. Then $(A,\tilde{0}) \notin T$ and $(A,B) \in T \Rightarrow (B,A) \in T$. Now

$$(A, B \bigcup C) \in T \Leftrightarrow A \bigcap (B \bigcup C) \neq \tilde{0}$$

$$\Leftrightarrow (A \bigcap B) \bigcup (A \bigcap C) \neq \tilde{0}$$

$$\Leftrightarrow A \bigcap B \neq \tilde{0} \text{ or } (A \bigcap C) \neq \tilde{0}$$

$$\Leftrightarrow (A, B) \in T \text{ or } (A, C) \in T.$$

Theorem 3.3 Let Δ^1 , $\Delta^2 \in m(X)$ and $A, B \in I(X)$. Then followings hold:

 $(1) \Delta^{1}(A \cup B) = \Delta^{1}(A) \cup \Delta^{1}(B),$

$$(2) (\Delta^1 \cup \Delta^2)(A) = \Delta^1(A) \cup \Delta^2(A),$$

(3) $A \subset B \Rightarrow \Delta^1(A) \subset \Delta^2(B)$.

Theorem 3.4 Let Δ be a binary relation on I(X). Then Δ is a preproximity of IFSs on X if and only if $\Delta = \Delta^{-1}$ and $\Delta(A) \in \Gamma(X)$, $\forall A \in I(X)$.

Definition 3.5 Let $\Delta \in m(X)$, $A \in I(X)$. Then $B \in I(X)$ is called a neighbourhood (in short nbd) of A with respect to Δ if $B^c \notin \Delta(A)$.

The collection of all nbds of A w.r.t. Δ is denoted by $N(\Delta, A)$.

Theorem 3.6 Let $\Delta, \Delta^1, \Delta^2 \in m(X)$. Then followings hold:

(1)
$$N(\delta, \tilde{0}) = I(X)$$
,

(2) if
$$B \in N(\Delta, A)$$
, $B^1 \in N(\Delta, A^1)$, then $B \cup B^1 \in N(\Delta, A \cup A^1)$,

(3)
$$N(\Delta, A \cup B) = N(\Delta, A) \cap N(\Delta, B)$$
,

(4)
$$N(\Delta, A) \subset N(\Delta, A^1)$$
 if $A^1 \subset A$.

- (5) $N(\Delta^1 \cup \Delta^2, A) = N(\Delta^1, A) \cap N(\Delta^2, A)$,
- (6) $N(\Delta^1, A) \subset N(\Delta^2, A)$ if $\Delta^2 \subset \Delta^1$.

Definition 3.7 Let $\Delta \in m(X)$, $A \in I(X)$. We define $C_{\Delta}: I(X) \to I(X)$ by

$$C_{\Delta}A = A \bigcup (\bigcup \{(p,q)_x : (p,q)_x \in \Delta(A)\})$$

where $(p,q)_x = \{ \langle x, p, q \rangle : x \in X \}$, 0 < p, $0 \le q$ and $p + q \le 1$. C_{Δ} is called the closure operator induced by Δ on X.

Theorem 3.8 Let $\Delta, \Delta^1 \in m(X)$. $A, B \in I(X)$. Then C_{Δ} satisfies the following conditins:

- (1) $C_{\Delta}\tilde{0} = \tilde{0}$,
- (2) $A \subset C_{\Delta}A$,
- (3) $C_{\Delta}(A \cup B) = C_{\Delta}A \cup C_{\Delta}B$,
- (4) $C_{\Delta}A \subset C_{\Delta^1}(A)$ if $\Delta \subset \Delta^1$.

From the above Theorem it is mentioned that C_{Δ} is a Čech closure operator and it is a Kuratowski closure operator if $C_{\Delta}(C_{\Delta}A) = C_{\Delta}A$, $\forall A \in I(X)$.

Theorem 3.9 Let Δ^1 , $\Delta^2 \in m(X)$. Then $\forall p \in (0,1], \forall q \in [0,1)$ with $p+q \leq 1$, $\forall x \in X$, $\Delta^1((p,q)_x) = \Delta^2((p,q)_x)$ implies $C_{\Delta^1}A = C_{\Delta^2}A$, $\forall A \in I(X)$.

Theorem 3.10 For a proximity π of IFSs on X, C, is a Kuratowski closure operator if

$$\tilde{1} \in \pi(C_{\pi}B) \Rightarrow \tilde{1} \in \pi(B).$$

Definition 3.11 Let $\Delta \in m(X)$ and $F \in \phi(X)$. Then we define

$$\Delta(F) = \bigcap \{\Delta(A) : A \in F\}.$$

Theorem 3.12 For Δ , Δ^1 , $\Delta^2 \in m(X)$ and $F, F^1, F^2 \in \phi(X)$ followings hold:

- (1) $\Delta(F) \in \Gamma(X)$,
- $(2) \Delta(A) = \bigcup \{\Delta(V) : V \in \omega(X), A \in V\},\$
- (3) $F^1 \subset \Delta(F^2) \Rightarrow F^2 \subset \Delta(F^1)$,
- $(4) (\Delta^1 \cup \Delta^2)(F) = \Delta^1(F) \cup \Delta^2(F),$
- $(5) \Delta(F^1 \cap F^2) = \Delta(F^1) \cup \Delta(F^2).$

Theorem 3.13 For a proximity π of IFSs on X, $F \subset \pi(F)$, \forall proper filter F of IFSs on X.

Definition 3.14 Let $\Delta \in m(X)$. A subfamily T of I(X) is said to be Δ -compatible if $A, B \in T \Rightarrow A \in \Delta(B)$.

A Δ -compatible grill is called a Δ -clan.

Theorem 3.15 For $\Delta \in m(X)$, $G \in \Gamma(X)$, the followings are equivalent:

- (1) G is a Δ -clan,
- (2) If $V \in \omega(X)$ such that $V \subset G$ then $G \subset \Delta(V)$,
- (3) $G \subset \bigcap \{\Delta(V) : V \in \omega(X), V \subset G\}$,
- (4) If $V^1, V^2 \in \omega(X)$ such that $V^1, V^2 \subset G$ then $V^1 \subset \Delta(V^2)$.

Theorem 3.16 Let $\Delta \in m(X)$. Then every Δ -clan is contained in a maximal Δ -clan.

Lemma 3.17 Let $\Delta \in m(X)$. If $A \in \Delta(B)$, then there exists $V^1, V^2 \in \omega(X)$ such that $A \in V^1$, $B \in V^2$ and $V^1 \subset \Delta(V^2)$.

Theorem 3.18 Let $\pi \in M(X)$. If $A \in \pi(B)$, then there is a π -clan of the form $V^1 \cup V^2$ where V^1 , $V^2 \in \omega(X)$ such that $A \in V^1$ and $B \in V^2$.

Corollary 3.19 Let $\pi \in M(X)$. If $A \in \pi(B)$, then there exists a maximal π -clan containing $\{A, B\}$.

Corollary 3.20 Let $\pi \in M(X)$. Then $\pi = \bigcup \{G \times G : G \text{ is maximal } \pi\text{-clan }\}$ = $\bigcup \{G \times G : G \text{ is a } \pi\text{-clan }\}.$

Remark 3.21 It is known that one of the most fundamental results in the area of proximities of fuzzy sets is that they are clan generated structure [3]. Because of the above representation, it follows that proximities of IFSs are also clan generated structures in the sense of their description as in the above Theorem.

References

- (1) K.Atanassov and S.Stoeva, Intuitionistic fuzzy sets, Proc. of Polish Symp. on Interval and Fuzzy Mathematics, Poznan (Aug. 1983) 23-26.
- (2) K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1) (1986) 87-96.
- (3) K. Atanassov, Review and new results on intuitionistic fuzzy sets, Preprint IM-MFAIS-1-88,

Sofia, 1988.

- (4) K. Atanassov, New operators defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61 (2) (1993) 131-142.
- (5) P.Burillo, H.Bustince, Two operators on interval-valued intuitionistic fuzzy sets: Part I, Comptes rendus de l'Acade'mie bulgare des Sciences, Tome 47, N°12, 1994.
- (6) P.Burillo, H.Bustince, Two operators on interval-valued intuitionistic fuzzy sets: Part II, Comptes rendus de l'Acade'mie bulgare des Sciences, Tome 48, N°1, 1995.
- (7) K.C.Chattopadhyay, U.K.Mukherjee, S.K.Samanta, Role of clans in the Proximities of fuzzy sets, The Journal of Fuzzy Mathematics 4 (1996), No-3.
- (8) Doğan Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997) 81-89.
- (9) Doğan Çoker, An introduction to Fuzzy Subspaces in Intuitionistic Fuzzy Topological Spaces, The Journal of Fuzzy Mathetatics Vol.4 No.4, 1996 749-764.
- (10) S.K.Samanta and Tapas Kumar Mondal, Intuitionistic gradation of openness: Intuitionistic fuzzy topology, Communicated to "Fuzzy Sets and Systems".
- (11) Tapas Kumar Mondal and S.K.Samanta, Topology of interval-valued intuitionistic fuzzy sets, Communicated to "Fuzzy Sets and Systems".