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0. Introduction

In [1] K.Atanassov and S.Stoeva defined intuitionistic fuzsy sets. Later on several authors worked
on intuitionistic fuzsy sets. Among others mention may be made of Atanassov [2], [3], [4], Burillo
and Bustince (5], [6], D.Coker [8], [9] and Samanta et. el. [10], [11]. Atanassov and Bustince
mainly worked on several operators and algebraic properties of intuitionistic fuzzy sets ; where
as D.Coker, Samanta et. el. worked on topological structures of intuitionistic fuazy sets.

In [7] Chattopadhyay, Samanta and Mukherjee fuzzified an important result of classical proximity
by proving that proximities of fuzzy sets are clan generated structer. In this paper we define a pre-
proximity and a proximity of intuitionistic fuzzy sets and prove that proximities of intuitionistic
fuzzy sets are clan generated structures.

1. Preliminaries and Notations

Definition 1.1 {1] Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS in short) A
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is an object having the form
A = {< z,ua(z), valz) >: x € X}

where the functions ux,vs : X — I denote the degree of membership (namely ua(z)) and the
degree of nonmembership (namely v,(z)) of the element x € X to the set A respectively and
0 < pa(x) + vu(x) < 1, for each = € X.

Example 1.2 [1] Every fuzzy set A on a nonempty set X is obviously an IFS having the form

A= {<z,ua(x),1 - palx) >: z € X}.

Notation 1.3 IFSs are denoted by A, B, C, D etc with (or without) suffix. Set of all IFSs on X
are denoted by 7{X).

Definition 1.4 [1] Let A, B € I(X). Then

(a) A C Biff uy(x) < up(x) and vy(x) > vp(z),¥ z € X,
(b) A=Biff AC Band B C A,

(c) A® = {< x, va(x), ualx) >: x € X},

(@) AN B = {< 2, us(z) A up(x), va(x) Vg(z) >: z € X},
(e) AUB = {< z, ua(x) V us(z),va(x) A va(z) >: z € X}.

Definition 1.5 [8] 0 = {< 2,0,1 >:z€ X} and 1 = {< 7,1,0 >: z € X}.

Corollary 1.8 [8] Let A, B € I(X). Then
(a) (AUB)® = A°( B°,
(b) (AN B)° = A°UB",

(©) (iy =4,
(d) (B) = 1.

Definition 1.7 Forz € X, p€ (0,1}, ¢€[0,1) with p+ ¢ < 1, anIFS A st.

pa(x) = p, va(z) = ¢
and

pa(¥) =0, vay) =1, Vy(#=)e X
is called an intuitionistic fuzzy point (in short IFP) on X. This is denoted by (p, ¢)..
Notation 1.8 We denote J as an indexing set.

2. Filter, Grill, Prime filter of intuitionistic fuzzy sets
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Definition 2.1 A stack S of IFSs on X is a subset of J(X)suchthat ADBeS= A€ S.

Definition 2.2 A filter F of IFSs on X is a subset of J(X) satisfying the following :

F#¢
ADBeF=>A€F
A, Be F= ANB¢e¢F.

A filter F of IFSs is called proper if § ¢ F.

Definition 2.3 A Grill G of IFSs on X is a subset of 7(X) satisfying the following :
0¢G

A>3BeG= AeqG

AUBeG= AeGor BeG.

A grill G of IFSs is called proper if G # ¢.

Definition 2.4 A stack V of IFSs on X is a prime filter of IFSs on X if it is & filter of IFSs on
X and as well as a grill of IFSs on X.

A maximal proper filter U/ of IFSs is called an ultrafilter of IFSs.

#(X) = Set of all filters of IFSs on X.
[(X) = Set of all grills of IFSs on X.
w(X) = Set of all prime filters of IFSs on X.

Example 2.5 Let A € I(X). Define F C I(X) by
F={Bel(X):BD>A}

Now clearly F # ¢. Let C > Be F. Then C D B D A and hence C € F. Agzinlet B,C € F
and 90 pp(z) > pa(®), va(x) < valz) and pe(z) > pa(x), vel(x) < valx). It follows that
us(®) A pe(x) > palx) and vp() V ve(z) < valx). Thus BNC DO A and therefore BNCe€F.
Consequently F ig a filter of IFSs.

Example 2.8 Let p > 0 and X be a nonempty set. Then

V,, = {A € I(X) : palz) 2 p}

ig a prime filter of IFSs on X.
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Remark 2.7 It is to be noted that for IFP (p,q),, the collection

Vo.s. = {A € I(X) : (p,q).€A}

is a filter but in general not a prime filter. In fact, it may not be a grill. To justify this take
an ordinary set X # ¢. Let p = 0.2, q = 0.3 and a fixed x € X. Let A, B € I(X) with
pa(x) = 0.25, va(x) = 0.35, ug(z) = 0.15, va(z) = 0.25. Then AUB € V5, but A € V;;,5, and
B ¢ Vy.0.-

Theorem 2.8 Let F!, F? € ¢(X) and G, G € T(X). Then
(1) FINFc@ = F cGlor FPcG?
(&) F cGUG = Flc G or F*' C G%

Theorem 2.9 ntersection of filters of IFSs is a filter of IFSs.
Theorem 2.10 Unson of grills of IFSs is a grill of IFSs.
Definition 2.11 For each stack S of IFSs, define dS = {A: A° ¢ S}.

Theorem 2.12 If S (with or without suffizes) is a stack of IFSs, F is a filter of IFSs and
QG 1s a grill of IFSs on X, then followsngs hold :

(1) dS* c dS?sf St D> 5%,

(2) d(dS) = S,

() dUS*) = NdS,

(4) NS = Uds’,

(5) dF ss a grell of IFSs,

(6] dG ss a filter of IFSs.

Theorem 2.18 [f F s a Riter of IFSs and G s a grill of IFSs such that F C G then there
exists a prime filterV of IFSs such that FC V C G. ’

Corollary 2.14 Let G C I(X). Then G is a grill of IFSs on X iff it is a union of prime filter of
IFSs on X.

8. Proximities of IFSs

Definition 3.1 A binary relation A on F(X) is said to be a basic preproximity of IFSs on X if
it satisfies the following conditions :

(1) 6 ¢ A(A), ¥ A € I(X),

2)A=A",
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(8) AUB € A(C) & A€ A(C) or B € A(C) where A(A) = {B € I(X): (A,B) € A}.

A binary relation 7 on J{X) is said to be a basic proximity of IFSs on X if it is a preproximity
of IFSg and X satisfles the condition

ANB#0= (A, B)em

When A(r) is a preproximity (proximity) of IFSs on X then X is called the reference set of A(r)
and is denoted by X{A)(X(x)).

Set of all basic preproximities (proximities) of IFSs on X is denoted by m{(X)(M(X)).

In the sequel, we shall, in general, drop the prefix ‘basic' and just talk of preproximities of IFSs
and proximities of IFSs. The pair (X, A)((X, 7)) is called a preproximity space of IFSs (proximity
space of IFSs) whenever A € m(X)(w € M(X)).

Example 3.2 Let T = {(A,B) € I(X) x I(X): ANB # 0}. Then (A,0) ¢ T and (A,B) €
T = (B,A) € T. Now

(4,BUC)eT & A[YBUC)#0
o ANBUANO#T
& A[B#0or(ANC)#0
@& (A\BYeTor (A C)eT.

Theorem 3.3 Let Al, A? € m(X) and A,B € I(X). Then foliowings hold :
(1) A(AUB) = A(A)UAY(B),

(%) (ATUAY)(A) = AY(4) UA¥(A),

(8} Ac B= AY(A) c A¥B).

Theorem 3.4 Let A be a dinary relation on I(X). Then A is a preprozsmity of IFSs on
X {f and only if A = A™! and A(A) e T(X), V A € I(X).

Definition 3.5 Let A € m(X), A € I(X). Then B € I(X) is called a neighbourhood (in short
nbd) of A with respect t0 A if B° ¢ A(A).
The collection of all nbds of A w.r.t. A is denoted by N(A, A).

Theoremn 3.8 Let A A, A% € m(X). Then followings hold .
(1) N(5,8) = I(X),

(2) if B € N(A,A), B' € N(A,AY), then BUB' € N(A, AUAY,
(3) N(A, AUB) = N(AaA)ﬂN(A-B),

1) N(A, A) C N(A, AY) f A C A.
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(5] N(ATUA? A) = N(A', A)NN(A? A),
(6) N(Al,A) c N(A?% A) if A% c AL,

Definition 3.7 Let A € m(X), A € I(X). We define C, : I(X) — I(X) by

CprA = AU(U{(Pa Q)z : (P: q)z € A(A)})

where (p,9), = {< z,p,g>:z€ X}, 0<p, 0<gandp+g< 1.
Ch is called the closure operator induced by A on X.

Theorem 3.8 Let A, Al € m(X). A,B € I{X). Then Ca satisfies the following condstins :
(1) Cald =0,

(2} ACChA,

(3) Ca(AUB) = CaAUC4B,

{4) CaA C Cpi{A) if A C AL

From the above Theorem it is mentioned that Ca is a Cech closure operator and it is a Kuratowski
closure operator if Co(CpA) = CpA, V A € I(X).

Theorem 3.9 Zet Al, A’ € m(X). ThenV pe (0,1,Vqge[0,1) ithp+qg<1, Vexe
X, AI((P: Q)z) = Az((?l ‘I)c) fmphies Ca1A = CaA, V Ae I(X)'

Theorem 3.10 Fbr a prozsmity n of IFSs on X, C, s a Kuratowsks closure operator {ff
ien(C,B)=1en(B).
Definition 3.11 Let A € m(X) and F € ¢(X). Then we define

A(F) ={A(A): A€ F}.

Theorem 3.12 Fbr A, A',A? € m(X) and F,F', F? € ¢(X) followings hoid :
(1) A(F) € I(X),

() A(A) = U{AV) : V € o(X), A€V},

(8} FL. C A(F?) = F* C A(FY),

(4) (A'UA*)(F) = AY(F)U AX(F),

(5) A(F' N F?) = AFY)JA(F?).

Theorem 3.18 For a prozimity w of IFSs on X, F C n(F), VY proper filter F of IFSs on
X.
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Definition 3.14 Let A € m(X). A subfamily T of J(X) is said to be A-compatible if
ABeT= A€ A(B).
A A-compatible grill is called & A-clan.

Theorem 3.15 For A € m(X), G € I'(X), the followsngs are equsvalent :
(1) G is a A-clan,

(2} IfV € w(X) such that V C G then G C A(V),

(3) G cN{AV):V ew(X),V C G},

(4) IV, V2 e w(X) such that VI, V2 C G then V1 C A(V?).

Theorem 3.18 Zet A € m(X). Then every A-clan is contasned sn a mazimal A-clan.

Lemma 3.17 Let A € m(X). If A € A(B), then there exists V1,V? € w(X) such that A €
Vi, BeV2?and V! c A(V?).

Theorem 3.18 Let w € M(X). If A € w(B), then there is a w-clan of the form VJV?
where V1, V? € w(X) such that A€ V! and B e V2.

Corollary 3.10 Let r € M(X). If A € m(B), then there exists a maximal #-clan containing
{A, B}.

Corollary 3.20 Let m € M(X). Then
7 =U{G x G : G is maximal -clan }
=U{G xG:Gisamclan }.
Remark 3.21 Rt is known that one of the most fundamental results in the area of proximities of
fuszy sets is that they are clan generated structure [3]. Because of the above representation, it

follows that proximities of IFSs are also clan generated structures in the sense of their description
as in the above Theorem.
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