The Transformation from Semantical Topologies to Syntactical Topologies in Fuzzy Propositional Logic System L*

Zheng Yalin, Chen Baili

(Institute of Information and System Science, Fazculty of Science, Xi'an Jiaotong University, Xian 710049, the People's Republic of China)

Abstract

In this paper, the interesting new informations are discovered and proved that a kind of semantical topologies can be transformed as a kind of syntactical topologies via the operators ()-(α -T(L*)), ()-(α ⁺-T(L*)), and ()-T(L*) on the fuzzy propositional logic system L* of Wang Guojun.

Keywords: fuzzy propositional logic; semantical topology; syntactical topology; Φ_R -(α -tautology); Φ_R -(α -tautology); Φ_R -tautology

Let $L^* = (F(S),L)$ be a fuzzy propositional logic system, where F(S) be a set of abstract fuzzy propositions, and a free algebra of type $(\neg, \land, \lor, \rightarrow)$; S be a set of abstract atomic fuzzy propositions; L be an evaluation lattice and a algebra of type $(\neg, \land, \lor, \rightarrow)$; the ordering \leqslant in L may be linear, or nonlinear.

Let R be any implication operator in the evaluation lattice L, Ω_R the set of all the R-evaluation mappings on F(S), where every Revaluation ν_R be $a(\neg, \land, \lor, \to)$ - homomorphism

$$v_R : \begin{cases} F(S) \to L, \\ A \to v_R(A) = \hat{f}(v_R(p_1), \dots, v_R(p_t)). \end{cases}$$

Let Φ_R , Ψ_R , \sum_R , ... be the subsets of Ω_R .

Suppose that $\alpha \in L - \{0\}$, $A \in F(S)$. If $v_R(A) \geqslant \alpha$ holds for every R -evaluation $v_R \in \Phi_R$, then A is said to be a $\Phi_R - (\alpha - tautology)$. For each $\alpha \in L - \{0\}$, the set of all the $\Phi_R - (\alpha - tautologies)$ in the fuzzy propositional logic system L^* is denoted by $\Phi_R - (\alpha - T(L^*))$. Thus a collection of operators

$$(\)-(\alpha-T(L^*)):\ P(\Omega_R)\to P(F(S)),\ (\alpha\in L-\{0\})$$

are obtained. We can prove that a kind of semantical topologies can be transform ed as a kind of syntactical topologies via the operators

() -
$$(\alpha - T(L^*))$$
, $(\alpha \in L - \{0\})$.

Proposition 1. Suppose that $\Phi_R \subset \Psi_R$, then

$$\Psi_{R} - (\alpha - T(L^*)) \subset \Phi_{R} - (\alpha - T(L^*)),$$

i.e., the operator

$$()-(\alpha-T(L^*):P(\Omega_R)\to P(F(S))$$

is a inverse - ordering mapping.

Proof. Let $A \in \Psi_R - (\alpha - T(L^*))$. Then $v_R(A) \ge \alpha$ holds for every $v_R \in \Psi_R$. Particularly, $v_R(A) \ge \alpha$ holds for each $v_R \in \Phi_R$. Therefore $A \in \Phi_R - (\alpha - T(L^*))$. So

$$\Psi_{p} - (\alpha - T(L^*)) \subset \Phi_{p} - (\alpha - T(L^*)).$$

This completes the proof.

Propositin 2. Suppose that $\{\Phi_R^{\theta} \mid \theta \in \Theta\} \subset P(\Omega_R)$. Then

$$(\bigcup_{\theta \in \Theta} \Phi_R^{\theta}) - (\alpha - T(L^*)) = \bigcap_{\theta \in \Theta} (\Phi_R^{\theta} - (\alpha - T(L^*))),$$

i.e., the operator () $-(\alpha - T(L^*))$: $P(\Omega_R) \to P(F(S))$ is a $\bigcup -\bigcap$ mapping.

Proof. It is clear that $\Phi_R^\theta \subset \bigcup_{\theta \in \Theta} \Phi_R^\theta$ holds for every $\theta \in \Theta$. It follows from Proposition 1 that

$$(\bigcup_{\theta \in \Theta} \Phi_R^{\theta}) - (\alpha - T(L^*)) \subset \Phi_R^{\theta} - (\alpha - T(L^*)),$$

and hence

$$(\bigcup_{\alpha\in\Phi}\Phi_R^\theta)-(\alpha-T(L^*))\subset\bigcap_{\alpha\in\Phi}(\Phi_R^\theta-(\alpha-T(L^*))).$$

On the other hand, suppose that $A \in \bigcap_{\theta \in \Theta} (\Phi_R^{\theta} - (\alpha - T(L^*)))$, then $A \in \Phi_R^{\theta} - (\alpha - T(L^*))$ holds for every $\theta \in \Theta$, i.e., $v_R(A) \geqslant \alpha$ holds for every $\theta \in \Theta$ and every $v_R \in \Phi_R^{\theta}$. Hence $v_R(A) \geqslant \alpha$ holds for every $v_R \in \bigcup_{n=0}^{\infty} \Phi_R^{\theta}$, i.e.,

$$A \in (\bigcup_{\theta \in \Theta} \Phi_R^{\theta}) - (\alpha - T(L^*)).$$

There fore,

7 ----

$$\bigcap_{\theta \in \Theta} (\Phi_R^\theta - (\alpha - T(L^*))) \subset (\bigcup_{\theta \in \Theta} \Phi_R^\theta) - (\alpha - T(L^*)).$$

This completes the proof.

Propostion3. Suppose that $\{\Phi_R^\theta \mid \theta \in \Theta \} \subset P(\Omega_R)$, and $\bigcap_{\theta \in \Theta} \Phi_R^\theta \in \{\Phi_R^\theta \mid \theta \in \Theta \}$. Then

$$(\bigcap_{\theta \in \Theta} \overline{\Phi}_R^{\theta}) - (\alpha - T(L^*)) = \bigcup_{\theta \in \Theta} (\overline{\Phi}_R^{\theta} - (\alpha - T(L^*))),$$

i.e., the operator

$$()-(\alpha-T(L^*)): P(\Omega_R) \rightarrow P(F(S))$$

is a conditional $\bigcap - \bigcup$ mapping.

Proof. It is clear that $\bigcap_{\theta \in \Theta} \Phi_R^{\theta} \subset \Phi_R^{\theta}$ holds for every $\theta \in \Theta$. It follows from Proposition 1 that

$$\Phi_R^{\theta} - (\alpha - T(L^*)) \subset (\bigcap_{k=0}^{\infty} \Phi_R^{\theta}) - (\alpha - T(L^*)),$$

and hence

$$\bigcup_{\theta \in \Theta} (\Phi_R^{\theta} - (\alpha - T(L^*)) \subset (\bigcap_{\theta \in \Theta} \Phi_R^{\theta}) - (\alpha - T(L^*)).$$

On the other hand, since there exists a $\theta_0 \in \Theta$ such that $\bigcap_{n \in \Theta} \Phi_R^{\theta_0} = \Phi_R^{\theta_0}$, so

$$(\bigcap_{\theta \in \Theta} \Phi_R^{\theta}) - (\alpha - T(L^*)) = \Phi_R^{\theta_0} - (\alpha - T(L^*)) \subset \bigcup_{\theta \in \Theta} (\Phi_R^{\theta_0} - (\alpha - T(L^*))).$$

There fore,

$$(\bigcap_{\theta \in \Theta} \Phi_R^{\theta}) - (\alpha - T(L^*)) = \bigcup_{\theta \in \Theta} (\Phi_R^{\theta} - (\alpha - T(L^*))).$$

This completes the proof.

Theorem 1. Suppose that T is a topology on the lattice $P(\Omega_R)$, and any finite subcollection H of T is closed under the operation \cap .
Let

$$\mathbf{T}-(\alpha-T(L^*))=\{\Phi_{R}-(\alpha-(T(L^*))\mid \Phi_{R}\in\mathbf{T}\},$$

and

$$P_{\star}(F(S)) = \{\mathbf{A} \mid \Omega_R - (\alpha - T(L^{\star})) \subset \mathbf{A} \subset F(S)\}.$$

Then $T - (\alpha - T(L^*))$ must be a cotopology on the sublattice $P_*(F(S))$ of the lattice P(F(S)).

Proof. (1) It is obvious that both the minimum element $\Omega_R - (\alpha - T(L^*))$ and the maximum element $\emptyset - (\alpha - T(L^*))$ belong to $\mathbf{T} - (\alpha - T(L^*))$. (2) Taking arbitrarily a subcollection $\{\Phi_R^\theta - (\alpha - T(L^*)) \mid \theta \in \Theta \}$, $\Phi_R^\theta \in \mathbf{T}\}$ of $\mathbf{T} - (\alpha - T(L^*))$. Notice that $\bigcup \Phi_R^\theta \in \mathbf{T}$,

so it follows from Proposition 2 that

$$\bigcap_{\theta \in \Theta} (\Phi_R^{\theta} - (\alpha - T(L^*))) = (\bigcup_{\theta \in \Theta} \Phi_R^{\theta}) - (\alpha - T(L^*)) \in \mathbf{T} - (\alpha - T(L^*)).$$

(3) Taking arbitrarily a finite subcollection $\{\Phi_R^{\theta} - (\alpha - T(L^*)) \mid \theta \in \Theta \}$, $\Phi_R^{\theta} \in T$ of $T - (\alpha - T(L^*))$. Since any finite subcollection of T is closed under the operation \bigcap , so

$$\bigcap_{\theta \in \Theta} \Phi_R^{\theta} \in \{ \Phi_R^{\theta} \mid \theta \in \Theta \}.$$

Notice that $\bigcap_{R \in \mathbb{R}} \Phi_R^{\theta} \in \mathbb{T}$, then it follows from Proposition 3 that

$$\bigcup_{\theta \in \Theta} (\Phi_R^{\theta} - (\alpha - T(L^*))) = (\bigcap_{\theta \in \Theta} \Phi_R^{\theta}) - (\alpha - T(L^*)) \in \mathbf{T} - (\alpha - T(L^*)).$$

Combine (1),(2), and (3) together, we see that $\mathbf{T} - (\alpha - T(L^*))$ is indeed a cotopology on the lattice $P_*(F(S))$. This completes the proof.

We have similar informations about operators () – (α^+ – $T(L^*)$): $P(\Omega_R) \to P(F(S))$, and () – $T(L^*)$: $P(\Omega_R) \to P(F(S))$. Where, for every $\Phi_R \subset \Omega_R$, Φ_R – (α^+ – $T(L^*)$) is the set of all the Φ_R – (α^+ – tautologies) in the fuzzy propositional logic system L^* ; Φ_R – $T(L^*)$ the set of all the Φ_R – tautologies in L^* . Let $A \in F(S)$ be a fuzzy proposition, if $v_R(A) > \alpha$ holds for every evaluation $v_R \in \Phi_R$, then A is said to be a Φ_R – (α^+ – tautology). Similarly, if $v_R(A) = 1$ holds for every evaluation $v_R \in \Phi_R$, then A is said to be a Φ_R – (α^+ – tautology).

Proposition 4. Suppose that $\Phi_p \subset \Psi_p$. Then

$$\Psi_{R} - (\alpha^{+} - T(L^{+})) \subset \Phi_{R} - (\alpha^{+} - T(L^{+})),$$

i.e., the operator () – (α^+ – $T(L^+)$): $P(\Omega_R) \to P(F(S))$ is a inverse – ordering mapping.

Proposition 5. Suppose that

$$\{\Phi_R^{\theta}|\theta\in\Theta\}\subset P(\Omega_R).$$

Then

$$(\bigcup_{\theta\in\Theta}\Phi_R^{\theta})-(\alpha^+-T(L^+))=\bigcap_{\theta\in\Theta}(\Phi_R^{\theta}-(\alpha^+-T(L^+))),$$

i.e., the operator $()-(\alpha^+-T(L^+)):P(\Omega_R)\to P(F(S))$ is a $\bigcup-\bigcap$ mapping.

Proposition 6. Suppose that $\{\Phi_R^{\theta} \mid \theta \in \Theta\} \subset P(\Omega_R)$, and $\bigcap_{\theta \in \Theta} \Phi_R^{\theta} \in \{\Phi_R^{\theta} \mid \theta\}$

$$\in \Theta \}. \ \ Then \ \ (\bigcap_{\theta \in \Theta} \Phi_R^{\theta}) - (\alpha^+ - T(L^+)) = \bigcup_{\theta \in \Theta} (\Phi_R^{\theta} - (\alpha - T(L^+))), \ i.e., \ operator \ (\) - (\alpha^+ - T(L^+)); \ \ P(\Omega_R^-) \to P(F(S)) \ \ is \ \ a \ \ conditional \ \bigcap_{\theta \in \Theta} - \bigcup_{\theta \in \Theta} mapping.$$

Theorem 2. Suppose that **T** is a topology on the lattice $P(\Omega_R)$, and any finite subcollection of **T** is closed under the operation \bigcap . Let

$$\mathbf{T} - (\alpha^+ - T(L^+)) = \{ \Phi_R - (\alpha^+ - T(L^+)) | \Phi_R \in \mathbf{T} \},$$

$$and \ P_{\star\star} (F(S)) = \{ \mathbf{B} \mid \Omega_R - (\alpha^+ - T(L^+)) \subset \mathbf{B} \subset F(S) \}. \ Then \ \mathbf{T} - (\alpha^+ - T(L^+))$$
 must be a cotopology on the sublattice $\mathbf{P}_{\star\star} (F(S))$ of the lattice $\mathbf{P}(F(S))$.

Proposition 7. Suppose that $\Phi_R \subset \Psi_R$. Then

$$\Psi_{_R}-T(L^{^*})\subset\Phi_{_R}-T(L^{^*}),$$

i.e., operator

$$() - T(L^{\circ}): P(\Omega_{\scriptscriptstyle R}) \rightarrow P(F(S))$$

is a inverse - ordering mapping.

Proposition 8. Suppose that $\{\Phi_R^{\theta} | \theta \in \Theta \} \subset P(\Omega_R)$. Then $\bigcup_{\theta \in \Theta} \Phi_R^{\theta} - T(L^*) = \bigcap_{\theta \in \Theta} (\Phi_R^{\theta} - T(L^*))$, i.e., operator $() - T(L^*): P(\Omega_R) \to P(F(S))$ is a $\bigcup - \bigcap$ mapping.

Proposition 9. Suppose that $\{\Phi_R^{\theta} \mid \theta \in \Theta\} \subset P(\Omega_R)$, and $\bigcap_{\theta \in \Theta} \Phi_R^{\theta} \in \{\Phi_R^{\theta} \mid \theta \in \Theta\}$. Then $(\bigcap_{\theta \in \Theta} \Phi_R^{\theta}) - T(L^*) = \bigcup_{\theta \in \Theta} (\Phi_R^{\theta} - T(L^*))$, i.e., operator $(\cdot) - T(L^*)$: $P(\Omega_R) \to P(F(S))$ is a conditional $\bigcap_{\theta \in \Theta} \Phi_R^{\theta} = \{\Phi_R^{\theta} \mid \theta \in \Theta\}$ mapping.

Theorem 3. Suppose that T is a topology, and any finite subcollection of T is closed under the operation \bigcap . Let

$$\mathbf{T} - T(L^*) = \{\Phi_R - T(L^*) | \Phi_R \in \mathbf{T}\},\$$

and

$$P_{+++}(F(S)) = \{B \mid \Omega_R - T(L^+) \subset B \subset F(S)\}.$$

Then $T - T(L^*)$ is a cotopology on the sublattice $P_{***}(F(S))$ of the lattice P(F(S)).

References

- (1) Wang Guojun, On the logic foundation of fuzzy reasoning. Lecture Notes in Fuzzy Mathematics and Computer Science, Omaha (USA): creighton University, 1997, 4:1-48.
- (2) Wang Guojun, On the logic foundation of fuzzy modus ponens and fuzzy modus tollens, The International Journal of Fuzzy Mathematics, 1997, 5:229-250.
- (3) Wang Guojun, Logic on a kind of algebras (I), Journal of Shaanxi Normal University (Natural Science Edition), 1997, 25(1):1-8.
- (4) Wang Guojun, Logic on a kind of algebras (II), Journal of Shaanxi Normal University (Natural Science Edition), 1997,25(3):1-8.
- (5) Wang Guojun, He Yinyu, On the structure of L*-Lindenbaum algebra and a simplified system of axioms for L*, Journal of Engineering Mathematics, 1998,15(1):1-8.