The Properties of L-fuzzy Topological Sum Spaces

Leng Xue-Bin

Department of Mathematics, Liaocheng Teachers' University, Shandong 252059, P. R. China

Abstract: The concept of L-fuzzy topological sum spaces is introduced by Meng. In this paper, some properties for L-fuzzy topological sum spaces are studied, and the relation between the L-fuzzy topological sum spaces and crisp topological sum spaces is exposed, and the stratum structures of L-fuzzy topological sum spaces are discussed.

Key Words: L-fuzzy topology; L-fuzzy topological sum space; Fuzzy lattice

1. Introduction

In crisp topology, topological sum space is a basic concept [4], and sum operation of topological spaces is of importance to simplify proofs and the description of examples. H. Ghanim et al. [3] have first extended the notion of crisp topological sum spaces to fuzzy topology. Meng have introduced the concept of L-fuzzy topological sum spaces in [1], and studied some additive L-fuzzy topological properties in [2]. In this paper, we discuss some properties of L-fuzzy topological sum spaces, and expose the relation between the L-fuzzy topological sum spaces and crisp topological sum spaces by taking the stratum structures of L-fuzzy topological spaces as the point of departure.

2. Preliminaries

Throughout this paper, L always denote a fuzzy lattice, i.e., a completely distributive and complete lattice with an order-reversing involution ', it's smallest element and greatest element are 0 and 1, respectively. Let X be a nonempty crisp set, and A

X, denotes the characteristic function of A defined on X into $\{0,1\}$ \subset L. A mapping from X into L is called an L-fuzzy set on X. The collection of all the L-fuzzy sets on X, denoted by Lx, can be naturally seen as a fuzzy lattice (L x , <, \land , \lor , '). The smallest element and the greatest element of L^{x} are 0_{x} and 1_{x} , respectively, where $0_{x}(x)$ $\equiv 0$, and $1_x(x) \equiv 1$ for any $x \in X$. (L^x, δ) stands for an L-fuzzy topological space (L-fts, for short), where δ is a subfamily of L^x containing 0_x and 1_x , which is closed under finite intersection and arbitrary union operation. For $r \in L$ and $A \in L^x$, $A_{[r]} = \{x \in X: A(x) > r\}$, $l_{\mathbf{r}}(A) = \{x \in X: A(x) \not\prec r\}. P(L) = \{r \in L: r \text{ is a prime element of } L \text{ and } r\}$ $\neq 1$. Let (L^x, δ) be an L-fts, and $r \in P(L)$. Then it is not difficult to prove (see [5]) both $l_{r}(\delta) = \{ l_{r}(A) : A \in \delta \}$ and $[\delta] = \{ A \in \delta : A \in \delta \}$ is crisp set} are crisp topologies on X. In addition, let $\varphi(\delta)$ = $\{l_r(A): r \in L, A \in \delta\}$, then it is clear that $\varphi(\delta)$ is the subbase of some crisp topology on X, and the crisp topology is denoted by $l_{L}(\delta)$. An L-fts $(L^{\mathbf{x}}, \delta)$ is called weak induced [6], if for each $A \in \delta$ and any $r \in L$, $\chi_{l_{r}(A)} \in \delta$.

Definition 2.1. Let $\Phi \neq Y \subset X$, $A \in L^Y$, $B \in L^X$. Then A^* , $A^{**} \in L^X$ and $B \mid Y \in L^Y$ are defined, respectively, as follows:

$$A^{*}(x) = \begin{cases} A(x), & x \in Y, \\ 0, & x \in Y, \end{cases}$$
 $\forall x \in X,$

$$A^{++}(x) = \begin{cases} A(x), & x \in Y, \\ 1, & x \in Y, \end{cases} \quad \forall x \in X,$$

$$(B|Y)(y) = B(y), \quad \forall y \in Y.$$

Clearly, $A^+|Y=A=A^{++}|Y$.

Definition 2.2 [1]. Let $\{(L^{\mathbf{x}_{\mathbf{t}}}, \delta_{\mathbf{t}})\}_{\mathbf{t} \in \mathbf{T}}$ be a family of L-fts's. Put X = $\bigcup_{\mathbf{t} \in \mathbf{T}} X_{\mathbf{t}}$. For each $\mathbf{t} \in \mathbf{T}$, $\mathbf{j}_{\mathbf{t}} : X_{\mathbf{t}} \rightarrow X$ is crisp inclusion mapping (i. e., $\mathbf{j}_{\mathbf{t}} (\mathbf{x}) = \mathbf{x}$, for each $\mathbf{x} \in X_{\mathbf{t}}$), it naturally induces an L-fuzzy mapping $\mathbf{j}_{\mathbf{t}} : L^{\mathbf{x}_{\mathbf{t}}} \rightarrow L^{\mathbf{x}}$. Then it is clear that $\delta = \{A \in L^{\mathbf{x}} : \forall \mathbf{t} \in \mathbf{T}, \mathbf{j}_{\mathbf{t}}^{-1}(A) \in \delta_{\mathbf{t}}\}$ is an L-fuzzy topology on X. δ is called the L-fuzzy sum topology of $\{\delta_{\mathbf{t}}\}_{\mathbf{t} \in \mathbf{T}}$, and is denoted by $\sum_{\mathbf{t} \in \mathbf{T}} \delta_{\mathbf{t}}$. L-fts $(L^{\mathbf{x}}, \delta)$ is called L-fuzzy topological sum space of $\{(L^{\mathbf{x}_{\mathbf{t}}}, \delta_{\mathbf{t}})\}_{\mathbf{t} \in \mathbf{T}}$, and denoted by $\sum_{\mathbf{t} \in \mathbf{T}} (L^{\mathbf{x}_{\mathbf{t}}}, \delta_{\mathbf{t}})$.

Remark 2.3. In the sequel we will assume that the family of L-fts's described in definition 2.2 is pairwise disjoint, i.e., for t, s \in T and $t \neq s$, $X_s \cap X_t = \Phi$. The reason is expounded in [1].

Proposition 2.4 [1]. Let $(L^{\mathbf{x}} \delta) = \sum_{\mathbf{t} \in T} (L^{\mathbf{x}_{\mathbf{t}}}, \delta_{\mathbf{t}})$. Then

- (1) $\delta = \{A \in L^x: \forall t \in T, A | X_t \in \delta_t\};$
- (2) $B \in \delta'$ iff $\forall t \in T$, $B | X_t \in \delta'$;
- (3) $\forall t \in T$, if $A_t \in \delta_t$ (resp. $A_t \in \delta'_t$), then $A_t^*, A_t^* \in \delta$ (resp. $A_t^*, A_t^* \in \delta'$);
- (4) $\forall t \in T$, $\delta | X_t = \delta_t$.

3. The properties of L-fuzzy topological sum spaces

Theorem 3.1. Let $(L^{\mathbf{x}}, \delta) = \sum_{\mathbf{t} \in T} (L^{\mathbf{x}}, \delta_{\mathbf{t}})$, then for each $\mathbf{r} \in P(L)$,

 $(X, l_{\mathbf{r}}(\delta)) = \sum_{\mathbf{t} \in T} (X_{\mathbf{t}}, l_{\mathbf{r}}(\delta_{\mathbf{t}})).$

Proof. For each $l_{\mathbf{r}}(A) \in l_{\mathbf{r}}(\delta)$, we want to prove that $\forall t \in T$, $l_{\mathbf{r}}(A) \cap X_t \in l_{\mathbf{r}}(\delta_t)$.

It is not difficult to check that

$$l_{r}(A) \cap X_{t} = l_{r}(A|X_{t})$$

$$(3.1)$$

It follows from $A \in \delta$ that $\forall t \in T$, $A | X_t \in \delta_t$.

Hence $l_{r}(A) \cap X_{t} = l_{r}(A|X_{t}) \in l_{r}(\delta_{t})$.

Theorem 3.2. Let $(L^{\mathbf{x}}, \delta) = \sum_{\mathbf{t} \in T} (L^{\mathbf{x}_{\mathbf{t}}}, \delta_{\mathbf{t}})$. Then $(X, [\delta]) = \sum_{\mathbf{t} \in T} (X_{\mathbf{t}}, [\delta_{\mathbf{t}}])$. Proof. For each $A \in [\delta]$, we have $\chi_A \in \delta$. Hence $\forall \mathbf{t} \in T$, $\chi_A | X_{\mathbf{t}} \in \delta_{\mathbf{t}}$. It is not difficult to check that $\chi_A | X_{\mathbf{t}} = \chi_{A \cap X_{\mathbf{t}}}$. Then $\forall \mathbf{t} \in T$, $\chi_{A \cap X_{\mathbf{t}}} \in \delta_{\mathbf{t}}$. Therefore $A \cap X_{\mathbf{t}} \in [\delta_{\mathbf{t}}]$. \square

Theorem 3.3. $(L^{\mathbf{x}}, \delta) = \sum_{\mathbf{t} \in T} (L^{\mathbf{x}_{\mathbf{t}}}, \delta_{\mathbf{t}})$ is weak induced iff $\forall \mathbf{t} \in T$, $(L^{\mathbf{x}_{\mathbf{t}}}, \delta_{\mathbf{t}})$ is weak induced.

Proof. Necessity. Suppose that $(L^{\mathbf{x}}, \delta)$ is weak induced. $\forall \mathbf{t} \in T$, $\forall A_{\mathbf{t}} \in \delta_{\mathbf{t}}$, $\forall \mathbf{r} \in L$, we want to prove $\chi_{I_{\mathbf{r}}(\mathbf{A}\mathbf{t})} \in \delta_{\mathbf{t}}$. From $A_{\mathbf{t}} \in \delta_{\mathbf{t}}$ we see that $A_{\mathbf{t}}^{\star} \in \delta$, and so $\forall \mathbf{r} \in L$, $\chi_{I_{\mathbf{r}}(\mathbf{A}\mathbf{t})} \in \delta$. Therefore $\forall \mathbf{t} \in T$, $\chi_{I_{\mathbf{r}}(\mathbf{A}\mathbf{t})} \mid X_{\mathbf{t}} \in \delta_{\mathbf{t}}$. Also, it is not difficult to check that $\forall \mathbf{t} \in T$,

$$\chi_{l_r(A_t)} | \chi_t = \chi_{l_r(A_t)}$$

This shows $\chi_{l_r(A_t)} \in \delta_t$.

Sufficiency. $\forall A \in \delta$, $\forall r \in L$, we want to prove $\chi_{I_{\mathbf{r}}(A)} \in \delta$. From $A \in \delta$ we get that $\forall t \in T$, $A \mid X_t \in \delta_t$, and so $\forall r \in L$, $\chi_{I_{\mathbf{r}}(A \mid X_t)} \in \delta_t$. It follows from proposition 2.4 (3) that $(\chi_{I_{\mathbf{r}}(A \mid X_t)})^+ \in \delta$. Thus $\bigvee_{t \in T} (\chi_{I_{\mathbf{r}}(A \mid X_t)})^+ \in \delta$. We next will prove that

$$\chi_{l_{\mathbf{r}}(\mathbf{A})} = \bigvee_{\mathbf{t} \in T} (\chi_{l_{\mathbf{r}}(\mathbf{A} \mid \mathbf{X}_{\mathbf{t}})}) + \tag{3.2}$$

First, $\forall r \in P(L)$, $\forall A_t \in L^{x_t}$, it is clear that

$$l_{\mathbf{r}}(\mathbf{A_t}) = l_{\mathbf{r}}(\mathbf{A_t^*}) \tag{3.3}$$

It is not difficult from Eq. (3.3) to check that

$$\left(\chi_{l_{\mathbf{r}}(\mathbf{A}_{\mathbf{t}})}\right)^{+} = \chi_{l_{\mathbf{r}}(\mathbf{A}_{\mathbf{t}}^{*})}$$

Second, we will prove that $A = \bigvee_{t \in T} (A | X_t)^{+}$.

 $\forall x \in X = \bigcup_{t \in T} X_t$, there exists $s \in T$ such that $x \in X_s$. Then

$$\left(\bigvee_{\mathtt{t}\in \mathtt{T}}\left(\mathtt{A}\,|\,\mathtt{X}_{\mathtt{t}}\right)\,^{\bullet}\right)\;\left(\mathtt{x}\right)\;=\;\bigvee_{\mathtt{t}\in \mathtt{T}}\left(\mathtt{A}\,|\,\mathtt{X}_{\mathtt{t}}\right)\,^{\bullet}\left(\mathtt{x}\right)\;=\;\left(\mathtt{A}\,|\,\mathtt{X}_{\mathtt{s}}\right)\;\left(\mathtt{x}\right)\;=\;\mathtt{A}\left(\mathtt{x}\right)$$

Hence $A = \bigvee_{t \in T} (A | X_t)^+$.

Finally, we have

$$\chi_{l_{\mathbf{r}}(A)} = \chi_{l_{\mathbf{r}}(\bigvee_{\mathbf{t}\in T}(A|\mathbf{X}_{\mathbf{t}})^{*})} = \chi_{\bigcup_{\mathbf{t}\in T}l_{\mathbf{r}}((A|\mathbf{X}_{\mathbf{t}})^{*})}$$
$$= \bigvee_{\mathbf{t}\in T}\chi_{l_{\mathbf{r}}((A|\mathbf{X}_{\mathbf{t}})^{*})} = \bigvee_{\mathbf{t}\in T}(\chi_{l_{\mathbf{r}}(A|\mathbf{X}_{\mathbf{t}})})^{*}$$

Therefore (3.2) holds. From this, $\chi_{l_r(A)} \in \delta$ follows immediately. \square

Given a crisp topological space (X, τ), then $\chi_{\tau} = \{ \chi_A : A \in \tau \}$ is clearly an L-fuzzy topology on X.

Theorem 3.4. $(X, \tau) = \sum_{t \in T} (X_t, \tau_t)$ iff $(L^x, \chi_{\tau}) = \sum_{t \in T} (L^{x_t}, \chi_{\tau_t})$.

Proof. It follows from $\forall A \subset X$, $\chi_{A \cap X_t} = \chi_A | X_t$.

Lemma 3.5. Let (X, τ) and (X_t, τ_t) , $t \in T$, be crisp topological spaces, and Ω be the subbase of (X, τ) . Then $(X, \tau) = \sum_{t \in T} (X_t, \tau_t)$ iff $\forall A \in \Omega$, $\forall t \in T$, $A \cap X_t \in \tau_t$.

Proof. Necessity is clear. Let us prove the sufficiency.

 $\forall \ B \in \tau \ , \ \ \text{assume that} \ \ B = \bigcup_{h \in H} (\bigcap_{i=1}^{k_h} A_i^h) \ , \ \ \text{where} \ \ A_i^h \in \Omega. \ \ \text{Then} \ \ \forall t \in T, \ B \bigcap X_t$

$$=\bigcup_{h\in H}(\bigcap_{i=1}^{k_h}(A_i^h\cap X_t))\in \tau_t. \quad \Box$$

Theorem 3.6. Let
$$(L^{\mathbf{X}}, \delta) = \sum_{\mathbf{t} \in T} (L^{\mathbf{X}_{\mathbf{t}}}, \delta_{\mathbf{t}})$$
. Then
$$(X, l_{\mathbf{L}}(\delta)) = \sum_{\mathbf{t} \in T} (X_{\mathbf{t}}, l_{\mathbf{L}}(\delta_{\mathbf{t}})).$$

Proof. It follows from lemma 3.4 and Eq. (3.1).

Given an L-fts (L^x, δ) , let $\lambda^*(\delta) = \{A \in \delta : \forall r \in L, \chi_{\ell_r(A)} \in \delta \}$. Then Zhang and Liu have proved in [6] that $\lambda^*(\delta)$ is an L-fuzzy topology on X.

Theorem 3.7. Let $(L^{\mathbf{x}}, \delta) = \sum_{\mathbf{t} \in T} (L^{\mathbf{x}_{\mathbf{t}}}, \delta_{\mathbf{t}})$. Then $(L^{\mathbf{x}}, \lambda^{+}(\delta)) = \sum_{\mathbf{t} \in T} (L^{\mathbf{x}_{\mathbf{t}}}, \lambda^{+}(\delta)).$

Proof. $A \in \lambda^{+}(\delta) \Rightarrow A \in \delta$, and $\forall r \in L$, $\chi_{I_{r}(A)} \in \delta$ $\Rightarrow \forall t \in T$, $A | X_{t} \in \delta_{t}$, and $\forall r \in L$, $\chi_{I_{r}(A)} | X_{t} \in \delta_{t}$ $\Rightarrow \forall t \in T$, $A | X_{t} \in \delta_{t}$, and $\forall r \in L$, $\chi_{I_{r}(A) \cap X_{t}} \in \delta_{t}$ $\Rightarrow \forall t \in T$, $A | X_{t} \in \delta_{t}$, and $\forall r \in L$, $\chi_{I_{r}(A) \cap X_{t}} \in \delta_{t}$ $\Rightarrow \forall t \in T$, $A | X_{t} \in \delta_{t}$, and $\forall r \in L$, $\chi_{I_{r}(A) \setminus X_{t}} \in \delta_{t}$

References

- [1] Meng Guangwu, On the sum of L-fuzzy topological spaces, Fuzzy Sets and Systems 59 (1993) 65-77.
- [2] Meng Guangwu, Some additive L-fuzzy topological properties, Fuzzy Sets and Systems 77 (1996) 385-392.
- [3] H. Ghanim, E. Kerre and S. Mashhour, Separation axioms, subspaces and sums in fuzzy topology, J. Math. Anal. Appl. 102 (1984) 189-202.
- [4] R. Engelking, General Topology, Warszawa, 1977.
- [5] Wang Guojun, The Theory of L-fuzzy Topological Spaces (Shanxi Normal University Press, Xi'an, China, 1988) (in Chinese).
- [6] Zhang Dexue and Liu Yingming, The weak inducify for L-fuzzy topological spaces, Acta Math. Sinica 36 (1993) 68-73 (in Chinese).