On Lightly Compact Sets In L-Fuzzy Topological Spaces

A. Haydar Eş

Department of Mathematics, Faculty of Sciences, Hacettepe University, 06532 - Ankara, Turkey

Abstract: In this paper we introduce the concept of L-fuzzy lightly compact set. The characterization of lightly compact sets are discussed. Also it is pointed out that lightly compactness is an "L-good extension" of usual light compactness.

Keywords: Fuzzy lattice, L - fuzzy topological spaces, lightly compact set, α -RF, r-cover, prime element, fuzzy mapping.

1. Introduction

Lightly compactness is the important notion in topology and plays an important part in the crisp light compactness. Hence it is a spectacular problem how the notion is generalized in L- fuzzy topology. Chen Shuili introduced an almost F-compactness and L- fuzzy H-sets in L- fuzzy topological spaces in [2,3,4,5]. This paper will generalize the notions and the result of [7,8], and establish the theory of L- fuzzy topology.

2. Preliminaries

Definition 2.1 [11] a) $p \in L$ is called a union-irreducible element of L, if for arbitrary $a,b \in L$ we have $p \le a \lor b \Rightarrow p \le a$ or $p \le b$. The set of all the non-zero union-irreducible elements of L is denoted by M(L).

b) $p \in L$ is called a prime element of L if for arbitrary $a, b \in L$ we have $a \land b \le p \Rightarrow a \le p$ or $b \le p$.

Put $p(L) = \{ p \in L : p \text{ is prime element of } L \text{ and } p \neq 1 \}$. It is easy to check that $p \in M(L)$ iff $p^1 \in p(L)$.

Put M(L,X) = $\{x_{\alpha} : x \in X , \alpha \in M(L)\}$, then we easily check that M(L,X) is just the set of all non-zero union-irreducible elements (molecule) of L^X .

According to Wang [11], in a completely distribitive lattice, each element α has a greatest minimal set which we will denote by $\beta(\alpha)$. We will put $\beta^*(\alpha)=\beta(\alpha)\cap M(L)$ and $\alpha^*(r)=(\beta^*(r'))$.

Definition 2.2 [3] Let (L^x, δ) be an L-fts, $A \in L^x$ and $\alpha \in M(L)$ $\Omega \subset \delta'$ is called an almost α -RF of A, if for each x_α in A, there is $P \in \Omega$ such that $P^* \in \eta(x_\alpha)$. Ω is called an almost α^- -RF of A if there exists $\lambda \in \beta^*(\alpha)$ such that Ω is a λ -RF of A.

Definition 2.3 [3] Let (L^x, δ) be an L -fts $A \in L^x$ and $r \in p(L)$.

(i) $\Omega \subset \delta$ is called an r-cover of A if for each $x \in X$, there is $B \in \Omega$ satisfying $B(x) \leq r$. Ω is called an r^+ -cover of A if there exists $t \in \alpha^*(r)$ such that Ω is a t-cover of A.

(ii) $\Omega \subset \delta$ is called an almost r-cover of A if for each $x \in X$, there is $B \in \Omega$ satisfying $\overline{B}(x) \leq r$. $\Omega \subset \delta$ is called an almost r^+ -cover of A if for each $x \in X$, there exists $t \in \alpha^*(r)$ such that Ω is an almost t-cover of A.

Definition 2.4 [9] Let (L^x, δ) be an L-fts, and $A \in L^x$. A is called strong fuzzy compact, if for each $\alpha \in M(L)$ and every α -RF Ω of A, there exists $\Psi \in FS(\Omega)$ such that Ψ is an α -RF of A.

Definition 2.5 [9] Let (L^x, δ) be an L-fts, $A \in L^x$, $r \in p(L)$, $\Omega \subset \delta$. Ω is called an r-cover of A, if for each $x \in A_{\Gamma'}$, there exists $U \in \Omega$ such that $U(x) \leq \Gamma$.

Definition 2.6 [9] Let $\Omega \subset L^x$, $r \in p(L)$. Ω is said to have finite r-intersection property (f. r- i.p., for short) in $A \in L^x$ if for each $\Psi \in FS(\Omega)$ there exists $x \in A_{r'}$ such that $(\Lambda \Psi)(x) \ge r'$.

Definition 2.7 [10] Let (L^x, δ) be an L-fts, $A \in L^x$, $\Omega \subset L^x$, $\alpha \in L$. Ω is called the family which has almost α -intersection property (or briefly, almost f. α -i.p.) in A, if

for each $\Psi \in FS(\Omega)$ there is $x \in A_{\alpha}$ such that $(\Lambda \Psi^{\circ})(x) \ge \alpha$. Ω is called the family which has almost $f \cdot \alpha^{+}$ -i.p. in A, if for each $t \in \beta^{*}(\alpha)$, Ω has almost $f \cdot t$ -i.p. in A.

Definition 2.8 [5] Let (L^x, δ) be an L-fts $.B \in L^x$ is called LF regular semiopen if there exists a $Q \in RO(L^x)$ satisfying $Q \subset B \subset \overline{Q}$; B is called LF regular semiclosed if there exists a $P \in RC(L^x)$ with $P^{\circ} \subset B \subset P$.

Definition 2.9 [1] Let (L^x, δ) and (L^y, ϵ) be two L-fts and $f: L^x \to L^y$ a fuzzy mapping

- (i) f is semicontinuous if $f^{-1}(B) \in SO(L^x)$ for each $B \in \varepsilon$.
- (ii) f is almost continuous if $f^{-1}(B) \in \delta$ for each $B \in RO(L^{\gamma})$.
- (iii) f is weakly continuous if $f^{-1}(B) \subset (f^{-1}(\overline{B}))^{\circ}$ for each $B \in \varepsilon$.

3. Lightly compact sets

Definition 3.1. Let (L^x,δ) be an L-fts, $A \in L^x$. A is called lightly compact, if for each countably α -RF Ω of A, there exists $\Psi \in FS(\Omega)$ such that Ψ is an almost α -RF of A. Particularly, when 1_x is lightly compact set, we call (L^x,δ) as a lightly compact space.

Theorem 3.2. An L-fuzzy set A in (L^x, δ) is a lightly compact set iff for any $r \in p(L)$ and every countably r-cover Ω of A, there exists $\Psi \in FS(\Omega)$ such that Ψ is an almost r^+ -cover of A.

Theorem 3.3 Let (L^x, δ) be an L-fts, $A \in L^x$. Then A is lightly compact set iff for each $r \in M(L)$ and every countably family $\Omega \subset \delta'$ which has the $f \cdot r^+$ -i.p. in A, there exists $x \in A_r$ such that $(\Lambda \overline{\Omega})(x) \ge r$.

Theorem 3.4. Let (L^x, δ) be an L-fts, $A \in L^x$. Then A is ligtly compact set iff for each regular closed countably α -RF Ω of A, there exists $\psi \in FS(\Omega)$ such that ψ is an α -RF of A.

Theorem 3.5. Let $(L^x, w_L(\tau))$ be the L-fuzzy topological space topologically generated by a crisp space (X,τ) . Then $(L^x, w_L(\tau))$ is L-fuzzy lightly compact iff (X,τ) is lightly compact.

Proof. Assume that $(L^x, w_L(\tau))$ is L-fuzzy lightly compact space and Ω is an countably open cover of X. Put $\chi_{\Omega} = \{\chi_A : A \in \Omega\} \subset w_L(\tau)$. For each $r \in p(L)$, χ_{Ω} is a countably reover of 1_X . Indeed, for each $x \in X$, there exists $A \in \Omega$ such that $x \in A$, and so

 $\chi_A(x)=1 \le r$. Hence χ_Ω is a countably r-cover of 1_X . From the Theorem 3.2, Ω has a finite subfamily $\{A_1,\ldots,A_n\}$ such that $\psi=\{\chi_{A_i}:i=1,2,\ldots,n\}$ is a finite almost r^+ -cover of 1_X , i.e., for each $x \in X$, there is $\chi_{A_i} \in \psi$ satisfying $(\chi_{A_i})_{(x)} \ne 0$. Since $(\chi_{A_i}) = \chi_{\overline{A_i}}$ and $x \in \overline{A_i}$, $\bigcup_{i=1}^n \overline{A_i} = X$. This implies that (X,τ) is lightly compact space.

Conversely, for each $r \in p(L)$, suppose that $\phi \subset w_L(\tau)$ is any countably r-cover of 1_X . Then for each $x \in X$, there exists $P \in \phi$ such that $P(x) \not\leq r$.i.e., $x \in l_r(P) \in \tau$. Hence $l_r(\phi) = \{l_r(P): P \in \phi\} \subset \tau$ is a countably cover of (X,τ) . From the lightly compactness of (X,τ) , there exists $\psi \in FS(\phi)$ such that $\overline{l_r(\phi)}$ is a cover of (X,τ) . Hence for each $x \in X$, there exists $P \in \psi$ such that $x \in \overline{l_r(P)} \in \overline{l_r(\psi)}$, i.e., $\overline{P}(x) \not\leq r$. Hence ψ is an almost r^+ -cover of 1_X . Therefore $(L^X, w_L(\tau))$ is L-fuzzy lightly compact.

Theorem 3.6. An L-fuzzy set A in (L^X,δ) is a lightly compact set iff every countably α -RORF Ω of A has a finite subfamily ψ that is an α -RORF of A for each $\alpha \in M(L)$.

Definition 3.7. Let (L^x, δ) be an L-fts, $A \in L^x$. A is called RS-compact, if for each $\alpha \in M(L)$ and each α -RSORF Ω of A, there exists $\psi \in FS(\Omega)$ such that ψ is an α -RSORF of A. (L^x, δ) is called RS-compact, if 1_x is RS-compact.

It is easy to verify that crisp RS-compactness is a special case of fuzzy RS-compactness.

Theorem 3.8. Let (X, τ) be a crisp topological space and (L^x, δ) be the corresponding L-fts, then (X, τ) is RS-compact iff $(L^x, w(\tau))$ is RS-compact.

Theorem 3.9. An L-fuzzy set A in L-fts (L^x, δ) is RS-compact iff for each $r \in p(L)$ and every r-regular semiopen cover Ω of A, there exists $\psi \in FS(\Omega)$ such that ψ is a r-regular semiopen cover of A.

Theorem 3.10. Let (L^x, δ) and (L^y, ϵ) be L-fts and f: $(L^x, \delta) \to (L^y, \epsilon)$ be an almost continuous L-fuzzy mapping. If A is an L-fuzzy lightly compact set in L^x , then f(A) is an L-fuzzy lightly compact set in L^y .

Theorem 3.11. If $f: (L^x, \delta) \to (L^y, \epsilon)$ is both weakly continuous and semicontinuous fuzzy mapping and A is an lightly compact set in (L^x, δ) , then f(A) is lightly compact set.

References

[1] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weak continuity, J. Math. Anal. Appl. 82 (1981) 14-32.

- [2] S. L. Chen, NS-closedness in L-fuzzy topological spaces, Proc. IFES'91, Japan, 1991 Vol. 1. 27-32.
- [3] S. L. Chen, Almost F-compactness in L-fuzzy topological spaces, J. Northeastern Math. 7 (1991), 4, 428-432.
- [4] S. L. Chen, Theory of L-fuzzy H-sets, Fuzzy Sets and Systems 51 (1992) 89-94.
- [5] S. L. Chen, NS-set and its fuzzy images, The Journal of Fuzzy Math. 2 (1994) 505-516.
- [6] S. L. Chen, Several Order homomorphism on L-fuzzy topological spaces, J. Shanxi Normal University 3 (1988) 15-19
- [7] D. Çoker, H. Eş, On fuzzy RS-compact sets, Doğa TU J. Math. Vol. 13 (1989) 34-42
- [8] A. H. Eş, Almost compactness and near compactness in fuzzy topological spaces, Fuzzy Sets and Systems 22 (1987) 289-295.
- [9] G. Meng, On countably strong fuzzy compact sets in L-fuzzy topological spaces, Fuzzy Sets and Systems 72 (1995) 119-123.
- [10] H. Meng, G. Meng, Almost N-compact sets in L-fuzzy topological spaces, Fuzzy Sets and Systems 91 (1997) 115-122.
- [11] G. Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems 47 (1992) 351-376.
- [12] D. Zaho, The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl. 128 (1987) 64-79.